П8 РАСЧЕТ ИНТЕГРАЛЬНЫХ ПОКАЗАТЕЛЕЙ РАБОТЫ ЭЛЕКТРОПРИВОДА

Существенной задачей расчета переходных процессов различных систем электропривода является оценка интегральных показателей работы конкретного электропривода за цикл (мгновенные и цикловые значения КПД

 η и коэффициента мощности $\cos \varphi$ или κ_M , среднеквадратичный ток двигателя I_{CPKB} , время переходного процесса t, пройденный путь α и др.) и сравнение его показателей с показателями других систем электропривода.

Для расчета интегральных показателей (например, системы ПЧ-АД – см. рис. П20 Приложения П7) в программах рассчитываются интегральные показатели переходных процессов:

- время пуска tk, время торможения tt;
- механическая энергия на валу двигателя Pv;
- активная энергия двигателя Pd, потери в преобразователе dPd, активная энергия из сети Pc;
 - реактивная энергия из сети Qc;
 - среднеквадратичный ток двигателя $I1kv = I1\kappa e$;
 - угол поворота вала двигателя al=L.

Расчет показателей выполнен только за времена пуска и торможения. Для расчета интегральных показателей за время установившегося режима в конце пуска выводятся значения параметров установившегося режима:

- синхронная скорость $\omega o/\omega on$;
- скорость вала двигателя $\omega = \omega_{YCT}$;
- момент $M = M_{VCT}$;
- ток статора $II = II_{VCT}$;
- мгновенный коэффициент полезного действия *kpd*;
- мгновенный коэффициент мощности km.

Пример расчета интегральных показателей показан в таблице П.9.

Время установившегося режима t_{VCT} определяется остатком пути L_{VCT} после пути переходных процессов пуска и торможения и скоростью установившегося режима.

Интегральные показатели электропривода в результате расчета нагрузочных диаграмм рис. П20:

- путь в установившемся режиме $L_{VCT} = 356,11$ рад;
- время установившегося режима $t_{VCT} = 2,97$ с;
- цикловый КПД $\eta = 0.6;$
- цикловый коэффициент мощности κ_M , = 0.81;
- среднеквадратичный ток статора $I_{CPKB} = 47,12 \text{ A};$

Максимальный ток статора 2,2·I1n = 2.2· 51 =112,2 A нужно сравнить с предельным выходным током преобразователя частоты $(1,5 \cdot I_{\Pi \text{Ч HOM}})$.

Максимальный момент двигателя $1.8 \cdot M_H = 1.8 \cdot 247.4 = 445$ Нм нужно сравнить с критическим моментом M_K .

Табл. П.9 Пример расчета интегральных показателей системы ПЧ $\,$ – АД

Tipiniop par leta initerpantina nonasarenen enereina iti 177											
	Показа тели	Едини ца изме- рения	Пуск	Установившийся режим	Торможе- ние	Σ					
1	ωo / ωon	-		1,194							
2	ωуст	рад/с		119,86							
3	MycT	Н.м		122,68							
4	Inycr	A		36,56							
5	-13C1			Угол поворота вала двигателя							
	L	рад	109.79	$L_{\text{yCT}} = L_{\text{C}} - L_{\text{H}} - L_{\text{T}} =$ $= 500 - 109, 79 - 34, 1 =$ $= 356, 11$	34.1	500					
6				Время работы в уст.режиме							
	t	c	1,2	$t_{\text{VCT}} = L_{\text{VCT}} / \omega_{\text{VCT}} = 356,11/119,86$	0,65	4,83					
				= 2,97							
7				Энергия на валу							
	Pv	Вт·с	19679	$P_{VYCT}=M_{YCT} \cdot \omega_{YCT} \cdot t_{YCT}=$ =122,68·119,86·2,97= =43672	-5248	58103					
8				Активная энергия на статоре							
	Pd	Вт·с	31838	$Pd_{yCT} = P_{CyCT} - dP_{DyCT} =$ = 72545-3470= = 69075	-3413	97500					
9				Энергия потерь в ПЧ							
	dPp	Втъс	839,8	$dPp_{yCT} = 0.5 \cdot dPpn \cdot t_{yCT}*$ $*(1+(I1/Ipn)^{2}) =$ $= 0.5 \cdot 1407 \cdot 2.97*$ $*(1+(36,56/45)^{2}) =$ $= 3470$	189,3	4500					
10				Активная энергия из сети							
	Pc	Вт·с	32678	$P_{CYCT} = P_{VYCT} / \eta =$ = 43672/0,602 = = 72545	-3223	102000					
11				Полная энергия из сети							
	Sc	Bap·c		$Sc_{yCT} = P_{CyCT}/km =$ =72545 / 0.953 = 76122	_	_					
12				Ток сети							
	I1c	A	-	I1c = $Sc_{yCT}/(3 \cdot U1\phi \cdot t_{yCT})$ = = $76122/(3 \cdot 220 \cdot 2,97)$ = = $38,8$	_	-					
13	I_{1KB}	A	69,7	Среднеквадратичный ток статора 36,56	37,77	$((\Sigma I_i^2 \cdot t_i) / \Sigma t_i)^{0.5} =$ $= ((69,7^2 \cdot 1,2+$ $+36,56^2 \cdot 2,97+$ $+37,77^2 \cdot 0,65)/$ $/(1,2+2,97+0,65))^{0.5} =$ $= 47,12$					

Продолжение таблицы П9

14				Мгновенный КПД системы		$\Sigma Pv / \Sigma Pc =$
	η	-	Pv / Pc = =19679/ /32678 = = 0,6	0,602	Pc / Pv = =(-3223)/ / (-5248) = = 0,614	$= 58103/102000 = 0,57$ $\Sigma \eta i \cdot ti / \Sigma ti$ $= (0,6 \cdot 1.2 + 0,602 \cdot 2,97 + 0,614 \cdot 0,65)/4,83 = 0,601$
15				Реактивная энергия из сети		
	Qc	Bap∙c	10389	Qc = $P_{CYCT} \cdot (1-km^2)^{05}/km =$ =72545 \cdot (1-0.953^2)^{0.5}/0.953 = = 20945	-33674	- 2339
16			$Pc/$ /(Pc^2+Qc^2) ^{0.5} = 32678/	Мгновенный коэффициент мощности системы	$ \begin{array}{c} Pc/\\ /(Pc^2+Qc^2)^{0.5} = \\ = -3223/ \end{array} $	102000/(102000 ² +(- 2339 ²) ^{0.5} = 0.999 Σcosφi·ti/Σti=
	km	-	$= 32678//(32678^2 ++10389^2)^{0.5} == 0.952$	0,953	$ = -32237 /(-3223^{2} + +(-33674)^{2})^{0.5} = = -0,095 $	=(0.952·1.2+ +0.953·2.97- -0.095·0.65)/ /4.83= 0.81
17	M_{MAKC}	o.e.	1,8			
18	I_{1MAKC}	o.e.	2,2			