Расчет естественных характеристик двигателей

С помощью естественной характеристики оценивают возможности двигателя при его работе в механической системе:

- выдерживать предельные значения тока (момента), которые двигатель может развивать кратковременно;
 - обеспечивать перевод двигателя в генераторный режим и др.

Расчет естественной характеристики выполняют аналитическим, графическим графоаналитическим Наиболее ИЛИ методами. изображением естественной характеристики двигателя является ее каталожная кривая. При наличии каталожной кривой отпадает необходимость в расчете характеристики, лишь иногда для получения на базе естественной характеристики характеристик приходится линеаризировать естественную искусственных характеристику на рабочем участке.

Д.1 Естественные характеристики двигателя независимого возбуждения

Каталожными данными двигателя независимого возбуждения являются номинальные данные:

 U_{H} – номинальное напряжение на якоре, В;

 P_{H} – номинальная мощность на валу, кВт;

 I_{H} – номинальный ток якорной цепи, А;

 $n_{\rm H}$ — номинальная частота вращения, об/мин, а также

 $n_{\textit{макс}}$ – максимальная допускаемая частота вращения, об/мин;

 $M_{\text{макс}}$ – максимальный вращающий момент, кГм;

 $J_{\partial 6}$ – момент инерции якоря, кгм 2 (или ${
m GD}^2 = 4~{
m J}_{
m ДB}$ – маховый момент).

В каталогах некоторых серий двигателей (в частности, крановометаллургической серии Д) и справочниках [18,21,24] приводятся:

 $2p_n$ – число полюсов;

N — число активных проводников якоря;

2а - число параллельных ветвей якоря;

 r_{og} – сопротивление обмотки якоря, Ом;

 $r_{\partial n}$ – сопротивление обмотки добавочных полюсов, Ом;

 W_{en} – число витков параллельной обмотки на полюс;

 r_{ob} — сопротивление параллельной обмотки, Ом;

 Φ_{H} – номинальный магнитный поток на полюс, мкс,

а также характеристики намагничивания двигателей $\Phi = f(F)$ и рабочие характеристики — каталожные зависимости от тока якоря I частоты вращения

n=f(I), момента на валу $M_{\theta}=f(I)$, мощности на валу $P_{\theta}=f(I)$ и коэффициента полезного действия $\eta=f(I)$.

Необходимо отметить, что для дальнейших расчетов каталожные данные частоты вращения n и момента M нужно пересчитать в единицах измерения системы СИ:

$$\omega$$
 (рад/с) = n (об/мин) / 9,55; $M(H_M) = 9,81M(кгм)$.

Механические характеристики двигателя независимого возбуждения прямолинейны и представляются формулой:

$$\omega = \frac{U}{\kappa \Phi} - M \frac{R}{(\kappa \Phi)^2}$$
 (Д.1)

Для естественной механической характеристики напряжение равно номинальному $U=U_{H}$, поток равен номинальному $\Phi=\Phi_{H}$, сопротивление якорной цепи равно внутреннему (невыключаемому):

$$R = r_{OR} + r_{On} + r_{KO} = r_{R};$$

$$\omega = \frac{U_{H}}{\kappa \Phi_{H}} - M \frac{r_{R}}{\left(\kappa \Phi_{H}\right)^{2}}.$$
(Д.2)

При отсутствии данных по сопротивлению якорной цепи величина $r_{\rm g}$ может быть приближенно определена из условия равенства постоянных и переменных потерь в номинальном режиме по формуле

$$r_{\mathcal{A}} \cong \frac{U_{\mathcal{H}} \cdot I_{\mathcal{H}} - P_{\mathcal{H}}}{2I_{\mathcal{H}}^2}. \tag{Д.3}$$

Произведение $\kappa \Phi_{H}$ также можно определить через каталожные данные

$$\kappa \Phi_{H} = \frac{U_{H} - I_{H} \cdot r_{g}}{\omega_{H}}.$$
 (Д.4)

Естественная механическая характеристика строится по двум точкам:

$$(\omega_H, M_H) u (\omega_{OH}, M=0).$$

Скорость идеального холостого хода $\omega_{\text{он}}$ определяется по формуле

$$\omega_{OH} = \frac{U}{\kappa \Phi}. \tag{Д.5}$$

Электромагнитный момент

$$M_{_{_{\scriptstyle H}}}=\kappa\Phi_{_{_{\scriptstyle H}}}\cdot I_{_{_{\scriptscriptstyle H}}}$$
 (Д.6)

двигатель развивает при нормальной частоте вращения $\omega_{\rm H}$.

Необходимо отметить, что механические характеристики двигателей $\omega = f(M)$ строятся в зависимости от электромагнитного момента

$$M = M_{\mathcal{B}} + M_{\mathcal{X}}. \tag{Д.7}$$

Момент потерь холостого хода часто принимают постоянным $M_{x}=M_{xh}$ и определяют по каталожным данным номинального режима

$$M_{XH} = M_H - M_{_{\scriptscriptstyle GH}}, \tag{Д.8}$$

$$M_{\mathcal{BH}} = \frac{P_{\mathcal{H}} \cdot 10^3}{\omega_{\mathcal{H}}},\tag{Д.9}$$

где $M_{\it вн}$ – номинальный момент на валу двигателя.

Естественная электромеханическая характеристика $\omega = f(I)$ определяется соотношением

$$\omega = \frac{U_{\mathcal{H}} - I \cdot r_{\mathcal{H}}}{\kappa \Phi_{\mathcal{H}}} \tag{Д.10}$$

и строится также по двум точкам: ($\omega_{\!\scriptscriptstyle H}$, $I_{\!\scriptscriptstyle H}$) и ($\omega_{\!\scriptscriptstyle OH}$, $I{=}0$).

Часто в рамках автоматизированного электропривода используются характеристики, построенные в относительных единицах (о.е.). Для перехода к о.е. назначаются базовые величины, за которые обычно принимаются номинальные значения: $U_{\delta} = U_{H}$, $I_{\delta} = I_{H}$, $\Phi_{\delta} = \Phi_{H}$ и лишь за базовую частоту вращения $\omega_{\delta} = \omega_{OH}$.

Базовые значения других переменных определяются через базовые значения основных переменных:

$$\begin{split} \boldsymbol{M}_{\boldsymbol{\delta}} &= \boldsymbol{M}_{\scriptscriptstyle{H}} = \boldsymbol{\kappa} \cdot \boldsymbol{\Phi}_{\scriptscriptstyle{H}} \cdot \boldsymbol{I}_{\scriptscriptstyle{H}}; \\ \boldsymbol{E}_{\boldsymbol{\delta}} &= \boldsymbol{E}_{\scriptscriptstyle{H}} = \boldsymbol{\kappa} \cdot \boldsymbol{\Phi}_{\scriptscriptstyle{H}} \cdot \boldsymbol{\omega}_{\scriptscriptstyle{0H}}; \\ \boldsymbol{R}_{\boldsymbol{\delta}} &= \boldsymbol{R}_{\scriptscriptstyle{H}} = \boldsymbol{U}_{\scriptscriptstyle{H}} / \boldsymbol{I}_{\scriptscriptstyle{H}}. \end{split}$$

Естественные механическая и электромеханическая характеристики в о.е. совпадают

$$\overline{\omega} = 1 - \overline{M} \cdot \overline{r_g};$$
 $\overline{\omega} = 1 - \overline{I} \cdot \overline{r_g};$
 $\overline{M} = \overline{I};$
(Д.11)

и строятся по точкам:

$$(\overline{\omega} = 1, \overline{M} = 0)u(\overline{\omega} = 1 - \overline{r_n}, \overline{M} = 1).$$

Использование изображения характеристик в о.е. позволит в дальнейшем легко строить искусственные характеристики и определять параметры схем включения.

Д.2 Естественные характеристики двигателя последовательного возбуждения

Двигатели последовательного возбуждения постепенно вытесняются из электроприводов промышленных механизмов асинхронными двигателями. Эти двигатели сохраняют свое место в электроприводе транспортных устройств (электровозы, троллейбусы, трамваи) благодаря их достоинствам для этого типа приводов:

- однопроводное питание;
- поток не зависит от напряжения сети;
- постоянство статической мощности;
- возможность форсирования переходных режимов и т.д.

Обмотка возбуждения двигателя последовательного возбуждения включается в цепь якоря и поток машины определяется током якоря. Механическая и электромеханическая характеристики двигателя определяются кривой намагничивания машины, поэтому естественные характеристики не поддаются аналитическому расчету. Расчет характеристик двигателя — графоаналитический, и исходными данными для расчета являются каталожные кривые — зависимости от тока якоря I момента на валу M_6 и частоты вращения n, а также мощности на валу P_6 и коэффициента полезного действия η .

В каталогах [Д] приводятся также номинальные данные двигателя (P_H , I_H , U_H , n_H), а также предельные значения момента $M_{MAKC.\partial ON}$ и частоты вращения ω_{MAKC} , момент инерции якоря $J_{\partial B}$ или маховый момент $GD^2 = 4 J_{\partial B}$. Для двигателей краново-металлургической серии (двигатели типа Д) приводятся значения допускаемых нагрузок P, I, n при каталожных значениях ПВ, что позволяет построить участок электромеханической характеристики.

Для дальнейших расчетов искусственных характеристик целесообразно построить зависимости электромагнитного момента $M_{3M}(I)$ и тормозного момента $M_{T}(I)$. Для этого задаются током якоря $I_{3ад}$, по каталожным кривым определяют частоту вращения ω_e на естественной электромеханической характеристике и значение момента на валу M_{θ} по каталожной зависимости $M_{\theta}(I)$.

Электромагнитный момент рассчитывается по соотношению

$$M_{3M} = k\Phi \cdot I_{3a\partial} = \frac{U_H - I_{3a\partial}(r_g + r_{oB})}{\omega_{\varrho}} I_{3a\partial}, \qquad (\text{Д.12})$$

а тормозной момент

$$M_T = 2 \cdot M_{\mathfrak{IM}} - M_m \cdot \tag{Д.13}$$

По результатам расчетов строятся зависимости $M_{\mathfrak{IM}}(I)$ и $M_{T}(I)$, а также естественная механическая характеристика $\omega = f(M_{\mathfrak{IM}})$.

Д.З. Естественные характеристики асинхронного двигателя

В каталогах электротехнической промышленности [15, 16] приводятся номинальные данные двигателя:

 U_{IH} – номинальное напряжение статора, В;

 I_{IH} – ток статора, А;

 P_{H} – мощность на валу, кВт;

 n_{H} — частота вращения, об/мин,

 $\cos \varphi_{\!\scriptscriptstyle H}$ – коэффициент мощности;

 $\eta_{\rm H}$ – коэффициент полезного действия,

а также

 M_{κ} – максимальный момент, Нм;

 n_{MAKC} — максимальная частота вращения, об/мин;

 $J_{\partial heta}$ — момент инерции ротора, кгм 2 .

Для двигателя с фазным ротором:

 E_{20} – напряжение на кольцах заторможенного разомкнутого ротора, В;

 I_{2H} — номинальный ток ротора, А.

Для двигателя с короткозамкнутым ротором:

 M_n – пусковой момент, Нм;

 I_n – пусковой ток статора, А.

Кроме номинальных данных, в каталогах двигателей крановометаллургической серии МТF(H) приводятся каталожные кривые — зависимости от скольжения S момента двигателя M(S), тока статора $I_I(S)$ и $cos \varphi(S)$, а также допускаемые нагрузки P, n, I при каталожных значениях продолжительности включения $\Pi B_{\text{кат}}$.

Наиболее точной механической характеристикой асинхронного двигателя является каталожная зависимость M(S), и лишь при отсутствии каталожной зависимости приходится обращаться к приближенным расчетам.

При известных сопротивлениях статора r_1 , x_1 и ротора r_2 , x_2 для расчета естественной механической характеристики используют уточненную формулу Клосса:

$$M = \frac{2M_{\kappa} \cdot (1 + aS_{\kappa})}{\frac{S_{\kappa}}{S} + \frac{S}{S_{\kappa}} + 2aS_{\kappa}};$$
 (Д.14)

$$S_{\kappa} = \pm \frac{r_2'}{\sqrt{r_1^2 + (x_1 + x_2')^2}};$$
 (Д.15)

$$a = r_{1}/r'_{2}; \qquad (Д.16)$$

$$M_{\kappa} = \frac{3 \cdot U_{1}^{2} \phi_{H}}{2\omega_{oH}(r_{1} + \sqrt{r_{1}^{2} + (x_{1} + x'_{2})^{2}}}; \qquad (Д.17)$$

$$r'_{2} = k_{e}^{2} \cdot r_{2};$$

$$x'_{2} = k_{e}^{2} \cdot x_{2};$$

$$k_{e} \approx \frac{0.95 \cdot U_{1H}}{E_{20}};$$

$$\omega_{oH} = \frac{2 \cdot \pi \cdot f_{1H}}{P_{n}};$$

где S_{κ} – критическое скольжение;

 M_{κ} — максимальный момент двигателя, Нм; обычно в каталогах приводится $M_{Ma\kappa c} = M_{\kappa}$;

 r_2' – приведенное активное сопротивление ротора, Ом;

 x_2' – приведенное индуктивное сопротивление рассеяния ротора, Ом;

 k_e – коэффициент трансформации;

 $\omega_{\!\scriptscriptstyle O\!H}$ — синхронная скорость вращения поля статора, рад/с;

 f_{IH} – номинальная частота напряжения статора, Γ ц;

 p_n – число пар полюсов.

Если сопротивления цепей неизвестны, то используют формулу (Д.14), в которой принимают a=1, а критическое скольжение рассчитывают по формуле:

$$S_{\kappa} = S_{H} \frac{\mu_{\kappa} \pm \sqrt{\mu_{\kappa}^{2} - 1 + 2\alpha \cdot S_{H}(\mu_{\kappa} - 1)}}{1 - 2\alpha \cdot S_{H}(\mu_{\kappa} - 1)}, \qquad (Д.18)$$

$$S_{H} = \frac{\omega_{OH} - \omega_{H}}{\omega_{OH}},$$

где μ_{κ} – перегрузочная способность асинхронного двигателя;

 S_{H} — номинальное относительное скольжение.

При увеличении номинальной мощности $P_{\rm H}$ двигателя величина активного сопротивления статора снижается, а при $P_{\rm H} > 10$ кВт [1] можно пренебречь его

величиной $r_1 \approx 0$. Тогда a = 0, выражение механической характеристики (Д.14) преобразуется к виду

$$M = \frac{2M_k}{\frac{S_k}{S} + \frac{S}{S_k}},\tag{Д.19}$$

а выражение критического скольжения (Д.18) - к виду

$$S_k = S_H \cdot (\mu_k \pm \sqrt{\mu_k^2 - 1}).$$
 (Д.20)

Момент потерь холостого хода асинхронного двигателя M_{χ} рассчитать довольно сложно из-за отсутствия каталожных данных по сопротивлениям статора и ротора. Поэтому в расчетах асинхронного электропривода можно не учитывать момент потерь холостого хода $(M_{\chi} \approx 0)$, а электромагнитный момент в установившемся режиме принимать равным статическому моменту.

Электромеханические характеристики асинхронного двигателя — зависимости частоты вращения ротора ω от тока статора $\omega(I_1)$, от тока ротора $\omega(I_2)$, от тока намагничивания $\omega(I_{\mu})$. Расчет этих зависимостей достаточно сложен, так как необходим учет сопротивлений статора и ротора и их изменений в зависимости от частоты токов ротора и статора. Также при расчете необходимо учитывать изменение сопротивления контура намагничивания с помощью кривой намагничивания. Чаще всего на стадии проектирования электропривода сопротивления обмоток и кривая намагничивания не известны.

С достаточной точностью для расчета электромеханических характеристик двигателя при питании от цеховой сети (напряжение постоянной амплитуды и частоты) можно использовать формулы профессора В.А.Шубенко. Эти формулы получены при не учете активного сопротивления статора $(r_1 = 0)$ и используют только каталожные данные двигателя.

Ток холостого хода (ток намагничивания)

$$I_{\mu H} = I_{1H} \cdot (\sin \varphi_H - \frac{S_H}{S_k} \cos \varphi_H) \cdot \tag{Д.21}$$

Ток ротора

$$I_2 = I_{2H} \cdot \sqrt{\frac{M \cdot S}{M_H \cdot S_H}} . \tag{Д.22}$$

Ток статора

$$I_1 = \sqrt{I_{\mu\mu}^2 + (I_{1\mu}^2 - I_{\mu\mu}^2) \frac{M \cdot S}{M_{\mu} \cdot S_{\mu}}}$$
 (Д.23)

При известных величинах сопротивлений статора и ротора расчет токов в этих цепях выполняется известными из ТОЭ методами расчета цепей переменного тока для Т- образной или Г-образной схем замещения асинхронного двигателя [7]

или с помощью его круговой диаграммы [16]. Алгоритм расчета характеристик и энергетических показателей асинхронного двигателя приведен в приложении Е (программа "harad. exe").

Если сопротивления цепей статора и ротора неизвестны, их можно рассчитать (с довольно большой погрешностью) через каталожные данные двигателя.

Для двигателя с фазным ротором:

$$\begin{split} r_{2} & \cong \frac{E_{20}}{\sqrt{3} \cdot I_{2H}} S_{H}; \\ r_{1} & \approx = r_{2}'; \\ x_{\kappa} & \approx \sqrt{r_{2}'^{2}/S_{k}^{2} - r_{1}^{2}}; \\ x_{1} & = x_{2}' & \cong \frac{x_{\kappa}}{2}; \\ x_{\mu} & \cong \frac{U_{1H}}{I_{\mu H}} - x_{1}. \end{split}$$

Для двигателя с короткозамкнутым ротором: $r_2' \cong \frac{M_n \cdot \omega_{0H}}{3I_n^2}$.