МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДОВ

Методические указания к проведению лабораторных работ

> Челябинск 2018

Хусаинов Р.З., Качалов А.В. Микропроцессорные системы управления электроприводов: Методические указания к выполнению лабораторных работ. – Челябинск, Учтех-Профи, 2018.– 77 с.

Методические указания предназначены для студентов средних и высших учебных заведений, изучающих дисциплины по архитектуре и программированию микропроцессорных систем. Методические указания также могут быть использованы для обучения учащихся профессионально-технических училищ и слушателей отраслевых учебных центров повышения квалификации инженернотехнических работников.

ОГЛАВЛЕНИЕ

1. ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА И ПОРЯДОК ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ РАБОТ	4
Описание лабораторного стенда	
Порядок выполнения лабораторных работ	
Оформление отчетов по лабораторным работам	
2. ЛАБОРАТОРНЫЕ РАБОТЫ	
Работа № 7. Микропроцессорное управление скоростью шагового двигателя с использованием шестнадцатиразрядного таймера Т1	2
Работа № 8. Микропроцессорное управление скоростью двигателя постоянног тока по схеме ШИП-ДПТ с применением таймера Т1 в режиме ШИМ	
Работа № 9. Аналого-цифровой преобразователь	29
Работа № 10. Динамическая индикация символов	41
Работа № 11. Внешние прерывания	56
ЛИТЕРАТУРА	63
ПРИЛОЖЕНИЕ 1. Расположение выводов микроконтроллера ATmega8535	64
ПРИЛОЖЕНИЕ 2. Регистры ввода/вывода микроконтроллера ATmega8535	65
ПРИЛОЖЕНИЕ 3. Таблица векторов прерываний микроконтроллера ATmega8535	68
ПРИЛОЖЕНИЕ 4. Таблица векторов прерываний микроконтроллера ATmega32	69
ПРИЛОЖЕНИЕ 5 Система команд микроконтроллеров AVR	70
Арифметические и логические команды	70
Команды сдвигов и операций с битами	71
Команды пересылки данных	73
Команды переходов	75

1. ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА И ПОРЯДОК ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ РАБОТ

Описание лабораторного стенда

Модуль «Микроконтроллер» предназначен для программирования и изучения функций микроконтроллера ATmega8535 семейства AVR, выпускаемого фирмой Atmel. Внешний вид модуля приведен на рис. 1.

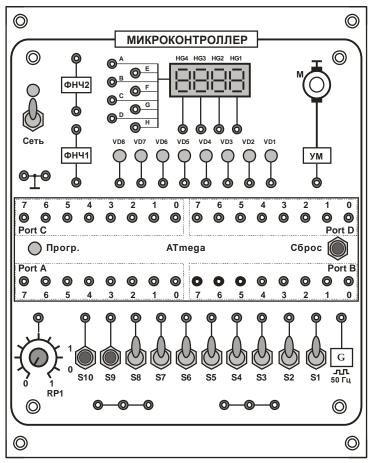


Рис. 1. Внешний вид модуля «Микроконтроллер»

На лицевой панели модуля расположены:

- переключатель «Сеть» со светодиодом индикации наличия напряжения. Переключатель осуществляет коммутацию напряжения, подаваемого на модуль;
- мнемосхему микроконтроллера с клеммами, связанными с портами ввода/вывода микроконтроллера;
- переключатели S1-S8 с выходными клеммами для подачи логических сигналов на микроконтроллер;
- кнопки S9, S10 с выходными клеммами для подачи логических сигналов на микроконтроллер;
- потенциометр RP1 с выходной клеммой для подачи аналогового напряжения на микроконтроллер;
- мнемосхема генератора низкочастотного прямоугольного сигнала 50 Гц и клемма выхода генератора;

- светодиоды VD1 VD8 с клеммами для их подключения к источнику напряжения (например, к микроконтроллеру);
- электродвигатель постоянного тока M с усилителем мощности и клеммой для подачи на него управляющего напряжения;
- семисегментный четырехсимвольный светодиодный индикатор с клеммами подачи напряжения на сегменты A, B, C, D, E, F, G, H, а также на общую точку каждого сегмента индикатора;
- два фильтра низкой частоты для фильтрации ШИМ-сигналов на выходе микроконтроллера.

Табл. 1. Краткая характеристика микроконтроллера ATmega8535

Параметр	Значение
Частота установленного кварцевого резонатора	8 МГц
Напряжение электропитания	2,7 – 5,5 B
Объем внутренней Flash – памяти	8 кБайт
Объем энергонезависимой памяти	512 Байт
Объем внутренней ОЗУ	512 Байт
32 программируемых входа/выхода	32 на 4 портах
JTAG – интерфейс	нет
8-битные таймеры/счетчики с ШИМ	2 шт.
16-битный таймер/счетчик с ШИМ	1 шт.
10-разрядный аналогово-цифровой преобразователь	есть
Количество каналов АЦП	8
Аналоговый компаратор	есть
Источники внешних прерываний	3 шт.
Универсальный приемопередатчик USART	есть
SPI – интерфейс	есть
TWI – интерфейс	есть

Порядок выполнения лабораторных работ

При подготовке к лабораторной работе необходимо:

- ознакомиться с ее содержанием и, пользуясь рекомендованной литературой и лекциями, изучить теоретические положения, на которых базируется работа;
 - в соответсвии со своим вариантом задания написать листинг программы;
- выполнить проверку рабоспособности программы на симуляторе AVR-studio;
 - ответить на контрольные вопросы к лабораторной работе.

Перед выполнением лабораторной работы необходимо:

- представить отчет по предыдущей работе;
- представить листинг программы и необходимые расчет по своему варианту задания к выполняемой лабораторной работе;
 - ответить на вопросы, задаваемые преподавателем.

При выполнении лабораторной работы необходимо:

– ввести программу в компьютер и показать ее работоспособность преподавателю на AVR-studio;

- произвести сборку схемы;
- *только после разрешения* преподавателя включить питание и приступить к программированию микроконтроллера и проверки его работы;
 - представить программу на мирокконтроллере на проверку преподавателю;
 - по окончании работы привести в порядок рабочее место.

Оформление отчетов по лабораторным работам

Все отчеты должны быть выполнены и сданы на проверку каждым студентом *индивидуально*. Работа считается сданной, если она проверена, не содержит ошибок и принята преподавателем.

Отчет помимо правильно оформленного титульного листа с указанием номера лабораторной работы, ее названия, фамилии и инициалов студента, выполнившего работу, номера группы и фамилии и инициалов преподавателя должен содержать (порядок оформления пунктов также должен соблюдаться):

- 1. Цель работы.
- 2. Функциональная схема устройства. Указываются все используемые входы/выходы микроконтроллера, периферийные элементы (тумблеры или потенциометры для подачи дискретных и аналоговых входных сигналов, резисторы, светодиоды, семисегментные индикаторы и т.п. выводимых данных), подключение питания микроконтроллера, подключение кварцевого генератора.
- 3. **Предварительные расчеты** (если они требуются). Обычно эти расчеты включают данные, требуемые для выполнения программы: выбор необходимых прерываний, расчеты периодов дискретизации таймеров и АЦП, разрядность АЦП и т.д).
- 4. **Листинг программы**. Листинг необходимо приводить обязательно с комментариями по основным элементам программы: пояснения по переменным, назначение группы инструкций в программе (стек, инициализация портов, инициализация таймера Т0 и т.д.).
- 5. Дисассемблер программы. Дисассемблер должен приводиться полностью для всей программы, включая таблицу векторов прерываний и память данных во FLASH-области.
- 6. Стек (если он используется). Информацию по стеку во время исполнения программы с указанием: вершины стека, информации, которая записывается в стек и необходимыми пояснениями.
- 7. Другие необходимые пункты в соответствии с требованиями к лабораторной работе.
 - 8. Выводы по работе.

Схемы и таблицы должны быть пронумерованы и аккуратно построены.

2. ЛАБОРАТОРНЫЕ РАБОТЫ

Работа № 7. Микропроцессорное управление скоростью шагового двигателя с использованием шестнадцатиразрядного таймера T1

Цель работы

Освоить теоретический и практический материал по работе 16-разрядного таймера Т1 микроконтроллера Atmega8535/ATmega32 в режиме подсчета временных интервалов. Применить приобретенные навыки при написании программы управления шаговым двигателем.

Программа работы

- 1. Изучить необходимый теоретический материал о регистрах и функционировании таймера Т1.
- 2. Разобраться в программах по использованию таймера Т1, представленной в лабораторной работе.
- 3. Написать и отладить собственную программу управления шаговым двигателем с использованием таймера Т1 в соответствии с вариантом.

Пояснения к работе

1. Назначение и регистры таймера Т1

Помимо двух восьмиразрядных таймеров/счетчиков T0 и T2, микроконтроллер AtmegaXX содержит двухканальный шестнадцатиразрядный таймер/счетчик T1.

Также как и восьмиразрядные таймеры Т1 служит для подсчета временных интервалов, регистрации внешних событий и работы в режиме ШИМ для вывода цифрового периодического сигнала с регулируемой скважностью и частотой. Таймер синхронизируется от источника тактового сигнала процессора, либо от источника внешнего сигнала, подаваемого на цифровой вход микроконтроллера.

Основным отличием таймера T1 от таймеров T0 и T2 является его 16-разрядная организация, поэтому основные регистры таймера состоят из двух частей – старшей и младшей, обозначаемых, соответственно, буквами H и L. Так, например, регистр счета **TCNT1** таймера T1 состоит из двух 8-разрядных регистров **TCNT1H** и **TCNT1L**.

В табл. 1 приведены регистры таймера Т1, управляющие его работой.

Табл.1. Регистры таймера Т1

$N_{\underline{0}}$	Назавание регистра	Разряд-	Обозначение	Старший	Младший
		ность, бит	регистра	байт	байт
1	Счетный регистр	16	TCNT1	TCNT1H	TCNT1L
2	Регистр сравнения канала А	16	OCR1A	OCR1AH	OCR1AL
3	Регистр сравнения канала В	16	OCR1B	OCR1BH	OCR1BL
4	Регистр захвата	16	ICR1	ICR1H	ICR1L
5	Регистры управления А	8	TCCR1A		_
6	Регистры управления В	8	TCCR1B	_	_

2. Работа таймера Т1

Рассмотрим работу таймера при его работе от источника тактового сигнала процессора (рис. 1), в качестве которого в лабораторном стенде выступает кварцевый резонатор с тактовой частотой $f_{CLK} = 8 \ M\Gamma$ ц.

Счет импульсов источника частоты ведется в 16-разрядном счетном регистре таймера **TCNT1=TCNT1H:TCNT1L**. Перед тем, как попасть в счетный регистр, тактовый сигнал поступает на схему деления частоты, которая, в соответствии с параметрами, установленными при инициализации таймера, производит деление частоты тактового сигнала f_{CLK} на коэффициент предделителя $K_{\Pi J}$ в следующем соотношении:

- без делителя частоты тактового сигнала $K_{\Pi \Pi} = 1$;
- с делителем частоты тактового сигнала $K_{\Pi \Pi} = 8$;
- с делителем частоты тактового сигнала $K_{\Pi \Pi} = 64$;
- с делителем частоты тактового сигнала $K_{\Pi\Pi} = 256$;
- с делителем частоты тактового сигнала $K_{\Pi \Pi} = 1024$.

Каждый импульс с предделителя частоты считается и инкрементирует значение, содержащееся в счетном регистре **TCNT1** (рис. 1).

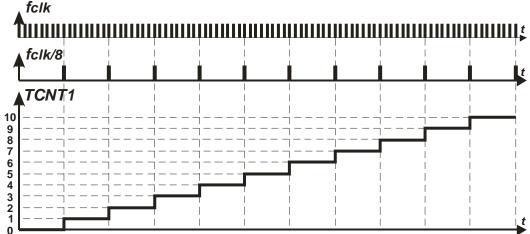


Рис. 1. Счетный регистр таймера Т1 при коэффициенте предделителя $K_{\Pi \Pi} = 8$

Когда счетный регистр **TCNT1** переполняется, т.е. при максимальном значении **TCNT1** = 65535 на его вход приходит очередной импульс и регистр сбрасывается в нулевое состояние, формируется флаг прерывания по переполнению таймера **TOV1** (Timer Overflow Flag) (рис. 2).

Кроме события «переполнение таймера», таймер Т1 позволяет реализовать события «совпадение таймера». В этом случае в таймер вводится регистр сравнения и его значение постоянно сравнивается со значением счетного регистра – при их равенстве в микроконтроллере возникает событие «совпадение». В отличие от восьмиразрядных таймеров, таймер Т1 имеет два канала сравнения и соответственно позволяет использовать 2 независимых события, называемых «совпадение канала А» и «совпадение канала В». Для этого в таймер введены два 16-ти разрядных регистра сравнения:

- канал A: **OCR1A = OCR1AH : OCR1AL**;
- канал В: **OCR1B = OCR1BH : OCR1BL**.

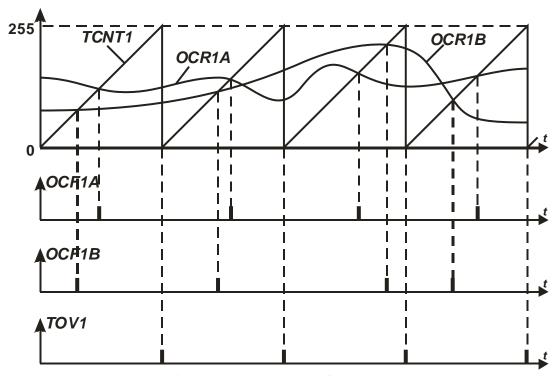


Рис. 2. Принцип работы таймера Т1 и формирование прерываний

В эти регистры записываются необходимые уставки срабатывания, то есть числа в диапазоне от 0 до 65535 (т.е. 2^{16} –1), при достижении которых счетным регистром **TCNT1** формируются флаги прерываний по совпадению канала A **OCF1A** и совпадению канала B **OCF1B** таймера T1 (см. рис. 2).

3. Регистр управления ТССК1А таймера Т1

Управление таймером T1 осуществляется через два 8-разрядных регистра управления **TCCR1A**, **TCCR1B**.

Регистр управления **TCCR1A** содержит биты, приведенные в табл. 2.

Табл. 2. Регистр управления TCCR1A таймера T1

Бит	7	6	5	4	3	2	1	0
Название	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10

Биты 7 и 6 – COM1A1 и COM1A0. Микросхема контроллера Atmega 8535 содержит вывод OC1A таймера T1 в качестве альтернативной функции вывода PD5 порта ввода/вывода D. Таймер T1 может управлять этим выводом в соответствии с выбранным режимом работы, определяемым комбинацией бит COM1A1:COM1A0 (табл. 3).

Табл. 3. Вывод канала A таймера Т1 в режиме подсчета временных интервалов

COM1A1	COM1A0	Пояснение
0	0	Вывод ОС1А отключен
0	1	Изменение ОС1А на противоположное при совпадении канала А
1	0	Очистка ОС1А при совпадении канала А
1	1	Установка ОС1А при совпадении канала А

Биты 5 и 4 – COM1B1 и COM1B0. Микроконтроллер Atmega 8535 содержит вывод OC1B таймера T1 в качестве альтернативной функции вывода PD4 порта ввода/вывода D. Таймер T1 может управлять этим выводом в

соответствии с выбранным режимом работы, определяемым комбинацией бит СОМ1В1:СОМ1В0 (табл. 4).

Табл. 4. Вывод канала В таймера Т1 в режиме подсчета временных интервалов

COM1B1	COM1B0	Пояснение
0	0	Вывод ОС1В отключен
0	1	Изменение ОС1В на противоположное при совпадении канала В
1	0	Очистка ОС1В при совпадении канала В
1	1	Установка ОС1В при совпадении канала В

Биты 3 и 2 – FOC1A и FOC1B. Эти биты действуют только в обычном режиме работы при подсчете временных интервалов. При записи в них логической «1» происходит срабатывание прерывания по совпадению соответствующего канала таймера и изменение выводов таймера ОС1A и ОС1В в соответствии с настройками бит COM1A1:COM1A0, COM1B1:COM1B0.

Биты 1 и 0 – WGM11, WGM10. Эти биты определяют режим работы таймера вместе с управляющими битами регистра TCCR1B.

4. Регистр управления ТССК1В таймера Т1

Регистр управления TCCR1B содержит биты, приведенные в табл. 5.

Табл. 5. Регистр управления TCCR1B таймера T1

Бит	7	6	5	4	3	2	1	0
Название	ICNC1	ICES1	ı	WGM13	WGM12	CS12	CS11	CS10

Бит 7 – ICNC1. Этот бит включает функцию фильтрации внешнего сигнала, поступающего на вывод PB1 микроконтроллера, когда таймер используется в качестве счетчика. Установка бита увеличивает надежность работы таймера. При активации этого бита между подачей сигнала на вывод PB1 и срабатыванием схемы счета проходит 4 периода тактовой частоты.

Бит 6 – ICES1. Этот бит определяет активный фронт сигнала на входе PB1. При ICES1=0 таймер срабатывает по спадающему фронту сигнала, иначе – по нарастающему фронту.

Бит 5. Зарезервирован и не используется.

Биты 4 и 3 – WGM13, WGM12. Эти биты вместе с битами WGM11, WGM10 регистра TCCR1A определяют режим работы таймера (табл. 6).

Табл. 6. Режимы работы таймера Т1

Режим	WGM13	WGM12	WGM11	WGM10	Режим работы	Вершина	Обновление OCR1x	Переполне- ние TOV1
0	0	0	0	0	Нормальный режим	0xFFFF	Немедленно	Максимум
1	0	0	0	1	Фазовый ШИМ, 8 бит	0x00FF	На вершине	Минимум
2	0	0	1	0	Фазовый ШИМ, 9 бит	0x01FF	На вершине	Минимум
3	0	0	1	1	Фазовый ШИМ, 10 бит	0x3FFF	На вершине	Минимум
4	0	1	0	0	Очистка при совпадении	OCR1A	Немедленно	Максимум
5	0	1	0	1	Быстрый ШИМ, 8 бит	0x00FF	На вершине	На вершине
6	0	1	1	0	Быстрый ШИМ, 9 бит	0x01FF	На вершине	На вершине
7	0	1	1	1	Быстрый ШИМ, 10 бит	0x03FF	На вершине	На вершине
8	1	0	0	0	Фазовый и частотный ШИМ	ICR1	Внизу	Минимум
9	1	0	0	1	Фазовый и частотный ШИМ	OCR1A	Внизу	Минимум

10	1	0	1	0	Фазовый ШИМ	ICR1	На вершине	Минимум
11	1	0	1	1	Фазовый ШИМ	OCR1A	На вершине	Минимум
12	1	1	0	0	Очистка при совпадении	ICR1	Немедленно	Максимум
13	1	1	0	1	_	_	_	_
14	1	1	1	0	Быстрый ШИМ	ICR1	На вершине	На вершине
15	1	1	1	1	Быстрый ШИМ	OCR1A	На вершине	На вершине

Биты 2...0 – CS12...CS10. Эти биты определяют источник задания частоты таймера Т1 и предделитель таймера (табл. 7).

Табл. 7. Предделитель таймера Т1

CS12	CS11	CS10	Пояснение
0	0	0	Нет источника. Таймер остановлен
0	0	1	Предделитель $K_{\Pi \Pi} = 1$
0	1	0	Предделитель $K_{\Pi J} = 8$
0	1	1	Предделитель $K_{\Pi J} = 64$
1	0	0	Предделитель $K_{\Pi J} = 256$
1	0	1	Предделитель $K_{\Pi J} = 1024$
1	1	0	Счет импульсов по спадающему фронту внешнего сигнала на входе Т1 (бит РВ1)
1	1	1	Счет импульсов по нарастающему фронту внешнего сигнала на входе T1(бит PB1)

5. Регистры масок и флагов прерываний таймеров

Помимо управляющих регистров **TCCR1A** и **TCCR1B**, счетного регистра **TCNT1** и регистров сравнения **OCR1A**, **OCR1B**, в микроконтроллере содержатся регистры масок прерываний и флагов таймеров соответственно **TIMSK** и **TIFR**.

Назначение этих регистров следующее. Когда возникает переполнение или совпадение таймера T1, автоматически формируются соответствующие флаги прерываний в регистре **TIFR** – биты TOV1, OCF1B или OCF1A устанавливаются в единичное состояние. Если в регистре масок прерываний таймеров **TIMSK** на соответствующее прерывание наложена маска (т.е. бит установлен в единицу), то вызывается процедура обработки этого прерывания. Если же маска прерывания не наложена (бит установлен в ноль), то при совпадении или переполнении таймера ничего не происходит.

Поскольку регистр масок прерываний таймеров **TIMSK** управляет всеми таймерами микроконтроллера, то рассмотрим только биты, разрешающие работу прерываний таймера T1 – биты 2...5 (табл. 8):

Табл. 8. Регистр масок прерываний таймеров TIMSK

Бит	7	6	5	4	3	2	1	0
Название	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0

- бит 2 TOIE1 разрешение прерывания по переполнению таймера T1;
- бит 3 OCIE1B разрешение прерывания по совпадению канала B;
- бит 4 OCIE1A разрешение прерывания по совпадению канала A;
- бит 5 TICIE1 разрешение прерывания захвата таймера T1.

Флаги прерываний таймера T1 в регстре флагов **TIFR** (табл. 9):

Табл. 9. Регистр флагов прерываний таймеров TIFR

Бит	7	6	5	4	3	2	1	0
Название	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0

- бит 2 TOV1 флаг прерывания по переполнению таймера Т1.
- бит 3 ОСF1В флаг прерывания по совпадению канала В таймера Т1;
- бит 4 OCF1A флаг прерывания по совпадению канала А таймера Т1;
- бит 5 ICF1 флаг прерывания «захват» таймера Т1.

Следует отметить, что использование в программе регистра флагов необязательно — для вызова обработчика прерывания можно использовать таблицу векторов, что и выполняется в большинстве программ с прерываниями таймеров.

6. Регистр захвата таймера Т1

Таймер Т1 содержит также шестнадцатиразрядный регистр захвата внешнего сигнала **ICR1** = **ICR1H** : **ICR1L** (Input Capture Register). При использовании для счета внешнего источника сигнала на входе Т1 (бит РВ1) значение этого регистра будет обновляться по каждому заданному событию на входе Т1. При этом в него будет записываться значение регистра счета **TCNT1**, содержащееся в данный момент в таймере. Этот режим полезен при подсчете длительности внешних сигналов.

Пример. Рассмотрим программу управления от контроллера скоростью шагового двигателя (ШД). Пусть требуется изменять скорость ШД, работающего в режиме униполярного несимметричного управления: при появлении сигнала «разрешение» (бит РАО), шаговый двигатель начинает вращение со скоростью 3 об/мин. При наличии сигнала «реверс» (бит РА1) ротор двигателя изменяет направление вращения с той же скоростью. Пусть 4 полуобмотки шагового двигателя A, B, /A, /В подключены к битам соответственно 0...3 порта В. Двигатель имеет стандартное разрешение по углу: N=200 имп/об, т.е. для несимметричного режима N_{НЕСИМ}=400 имп/об. Для получения импульсов заданной частоты необходимо использовать таймер T1 с прерыванием по совпадению, канал A.

Вначале выполним необходимые вычисления:

1. Рассчитаем требуемую частоту подачи импульсов на обмотки

$$f_{T1}$$
=(3 об/мин *400 имп/об) / 60 с = 20 Гц.

- 2. Рассчитаем параметры регистра сравнения таймера Т1:
- а) частота работы таймера $f_{T1} = f_{CLK}/(K_{\Pi \Pi} * OCR1A)),$

где f_{CLK} – частота кварцевого генератора, f_{CLK} =8000000 Гц;

 $K_{\Pi \mbox{\scriptsize Π}}$ – коэффициент пределителя таймера T1;

OCR1A – значение регистра сравнения канала А таймера Т1 в режиме совпадения;

б) для получения заданной частоты 20 Гц коэффициент предделителя необходимо выбрать равным $K_{\Pi \text{Д}} = 8$ и тогда

OCR1A=
$$f_{CLK}/(K_{\Pi JI}*f_{T1})=50000=0xC350$$
,

T.e. OCR1AH=0xC3, OCR1BL=0x50.

3. Затем выберем настройку регистров управления TCCR1A и TCCR1B TCCR1A=0b0000 0000=0;

TCCR1B=0b0000 1010=\$0A – режим СТС и коэффициент пределителя 8.

- 4. Настройка прерывания:
- В таблице векторов микросхемы ATmega32 адрес вектора прерывания таймера T1 по совпадению канала A равен \$0E.

В регистре TIMSK 4 бит разрешает прерывание таймера Т1 по совпадению канала A, следовательно, TIMSK=0b0001 0000=0x10.

- 5. Настройка портов ввода/вывода:
- порт А на вход
- порт В на выход
- 6. Последовательность переключения обмоток ШД при прямом вращении приведена в табл. 10, где первая строка значение переменной, которая инкрементирует значение от 0 до 7 и далее повторяет снова с нулевого значения (регистр общего назначения R_X), вторая строка обмотка двигателя, третья строка эквивалентное значение битов порта B, при этом учитывается, что обмотка A соединена с выводом A обмотка B A обмотка A A соединена A соединена

Табл. 10. Последовательность переключения обмоток ШД

$R_{\rm X}$	0	1	2	3	4	5	6	7
Обмотка ШД	A	A+B	В	B+/A	/A	/A+/B	/B	/B+A
Порт В	0x01	0x03	0x02	0x06	0x04	0x0C	0x08	0x09

- 7. При реверсе последовательность перключения обмоток обратная, т.е. переменная $R_{\rm X}$ декрементирует свое значение от 7 до 0.
 - 8. Для записи значений переключения обмоток используем FLASH-память:
- а) данные запишем в свободную область памяти программ, например, с адреса \$100, для этого в конце программы используем директиву «.db» и в ней запишем данные из табл. 10;
- б) для чтения этих данных используем косвенную адресация данных через указатель Z=zh:zl=R31:R30 и команду LPM чтение данных из FLASH-память. Напомним, что прежде чем, считывать значение из памяти надо настроить значение этого указателя Z:
- старший байт не меняется во время исполнения всей программы и равен удвоенному значению старшего байта адреса, т.е. zh=2;
- младший байт указателя изменяет свое значение от 0 до 7 при прямом вращении, и от 7 до 0 при обратном.

Листинг программы приведен ниже.

```
.org 0
    rjmp reset
.org $0E
    rjmp T1_COMPA
reset:
    ldi r16,8
               ; инициализация стека
    ldi r17,$5F
    out sph, r16
    out spl,r17
    clr R16
               ; инициализация портов
    ser R17
    out DDRA,r16 ; порт A - на вход
    out DDRB,r17 ; порт В - на выход
    out PORTA, r17
    out TCCR1A, r16; инициализация таймера
    out TCCR1B,r16; стоп таймера Т1
    out TCNT1H, r16
    out TCNT1L, r16
    ldi r17,$C3
    ldi r18,$50
    out OCR1AH, r17
    out OCR1AL, r18
    ldi r17,$0A ; 0000 1010 - СТС, Кпд=8
    out TCCR1B,r17; пуск T1 с частотой 20Гц
    ldi zh,2 ; указатель Z на адрес $100
    clr zl
    out TIMSK,r17
                ; глобальное разрешение прерываний
    sei
main:
    rjmp main ; основной цикл
;---Обработчик прерывания T1 ------
T1 COMPA:
    sbis PINA, 0 ; если 0 бит порта A в "1", то пропустить
                 ; следующую строку
    rjmp stop ; переход на остановку двигателя
    sbic PINA,1 ; если 1 бит порта A в "0", то пропустить
                 ; следующую строку
    rjmp revers ; переход на реверс двигателя
    inc zl
                 ; прямое вращение
    cpi zl,8
    brlo read
    clr zl
    rjmp read
revers:
                 ; реверс
    dec zl
    cpi zl,8
    brlo read
    ldi zl,7
read:
                 ; чтение данных из FLASH-памяти
    1pm
    out PORTB, r0 ; вывод в порт В
    rjmp end
stop:
                  ; стоп двигателя
    out PORTB, r16
```

Задание на выполнение

1. Разработать программу «Управление двухфазным шаговым двигателем», с использованием таймера Т1 для задания скорости вращения двигателя. Во всех вариантах задания должен быть реализован реверс двигателя. Режим работы двигателя, скорость вращения, биты выдачи данных, тип прерывания таймера Т1 выбираются по таблицам в зависимости от персональных данных обучаемых.

Выбор исходных данных выполняется по таблицам:

а) Порт выдачи данных и режим работы системы управления шагового

двигателя выбирается по первой букве фамилии:

Первая буква	Порт выдачи	Режим работы системы	Тип	
	-	-		
фамилии	данных	управления двигателя	прерывания Т1	
А, К, У	A	Симметричный, 1 фаза	Переполнение	
Б, Л, Ф	C	Симметричный, 1 фаза	Совпадение А	
B, M, X	D	Симметричный, 1 фаза	Совпадение В	
Г, Н, Ц	A	Несимметричный	Переполнение	
Д, О, Ч	C	Несимметричный	Совпадение А	
Е, П, Ш	D	Несимметричный	Совпадение В	
Ж, Р, Щ	A	Симметричный, 2 фазы	Переполнение	
3, C, Э	C	Симметричный, 2 фазы	Совпадение А	
И, Т, Ю, Я D		Симметричный, 2 фазы	Совпадение В	

б) Биты управления шаговым двигателем, а также очередность их переключения определяется датой рождения:

Дата Биты управления рождения шаговым двигателем 1, 15, 29 0, 1, 6, 72, 16, 30 1, 2, 5, 6 3, 17, 31 0, 2, 4, 6 4, 18 2, 3, 4, 7 5, 19 1, 3, 5, 7 6, 20 7, 6, 5, 1 7, 21 6, 5, 2, 1

Дата	Биты управления
рождения	шаговым двигателем
8, 22	4, 3, 1, 0
9, 23	3, 2, 1, 7
10, 24	7, 5, 3, 1
11, 25	6, 4, 2, 0
12, 26	4, 5, 0, 1
13, 27	3, 4, 6, 7
14, 28	5, 4, 1, 0

в) Скорости вращения двигателя при N=200 имп/об определяются по месяцу рождения с использованием таблицы:

Месяц	Скорость вращения		
рождения	двигателя, об/мин		
Январь	1 / 15		
Февраль	2,5 / 25		
Март	1,5 / 7,5		

Месяц	Скорость вращения		
рождения	двигателя, об/мин		
Июль	4,0 / 20		
Август	0,5 / 10		
Сентябрь	0,8 / 8		

Апрель	0,25 / 30		
Май	5 / 60		
Июнь	0,9 / 9		

Октябрь	1,2 / 12
Ноябрь	2,0 / 20
Декабрь	3 / 33

В отчете привести:

- персональные данные и выбор параметров;
- функциональную схему электропривода;
- таблицу последовательности переключения обмоток при прямом вращении и реверсе;
- векторные диаграммы м.д.с. статора и расчет момента в различных фазах переключения обмоток;
 - настройку таймера и расчет времени задержки, реализованной на таймере;
 - листинг программы;
 - блок-схему алгоритма.
- 2. Разработать программу «Управление m-фазным ШД» регулирования скорости вращения прозвольного m-фазного шагового двигателя с использованием таймера Т1. Все варианты должны обеспечивать униполярное управление, 2 заданные скорости регулирования и реверс двигателя. Система должна иметь: 3 входа (1 скорость, 2 скорость, реверс), N выходов (по количеству фаз двигателя). Параметры для расчета изменяются в зависимости от персональных данных обучаемых.

Выбор исходных данных выполняется по таблицам:

а) Тип шагового двигателя (количество обмоток) и способ переключения обмоток выбираются по дате рождения:

Дата	Кол-во	Способ	
рождения	обмоток ШД	управления	
1, 16, 31	3	Сим.,1 фаза	
2, 17	3	Несим.	
3, 18	4	Сим., 1 фаза	
4, 19	4	Сим., 2 фаза	
5, 20	4	Несим.	
6, 21	5	Сим., 1 фаза	
7, 22	5	Сим., 2 фаза	
8, 23	5	Сим, 3 фаза	

Дата	Кол-во	Способ управления
рождения	обмоток ШД	
9, 24	5	Несим. 1фаза/2 фазы
10, 25	5	Несим. 2фазы/3фазы
11, 26	6	Сим., 1 фаза
12, 27	6	Сим., 2 фаза
13, 28	6	Сим., 3 фаза
14, 29	6	Несим. 1фазы/2фазы
15, 30	6	Несим. 2фазы/3фазы

Примечание:

cum. — симметричный, hecumm. — несимметричный, $1 ext{ $\phi asa/2$ $\phi asa}$ — в первом такте включена $1 ext{ $\phi asa}$, во втором — $2 ext{ $\phi asa}$ (аналогично $2 ext{ $\phi asa}$).

б) Частоты выдачи импульсов, определяющие скорость вращения ШД, определяются первой буквой фамилии по таблице:

Первая буква	Частота выдачи		
фамилии	импульсов, Гц		
А, У	1,0 / 2,0		
Б, Л, Ф	0,5 / 1,5		
B, M, X	1,5 / 3,0		
Г, Н, Ц	0,4 / 1,6		
Д, О, Ч	0,75 / 2,25		

Первая буква	Частота выдачи			
имени	импульсов, Гц			
Е, П, Ш	0,8 / 2,4			
Ж, Р, Щ	1,5 / 4,5			
3, C, Э	1,8 / 5,4			
И, Т, Ю	2,5 / 7,5			
К, Я	2,2 / 4,4			

В отчете привести:

- персональные данные и выбор параметров;
- функциональную схему электропривода;
- таблицу последовательности переключения обмоток при прямом вращении и реверсе;
- векторные диаграммы м.д.с. статора и расчет момента в различных фазах переключения обмоток;
 - настройку таймера и расчет времени задержки, реализованной на таймере;
 - листинг программы;
 - блок-схему алгоритма.
- **3.** Напишите программу включения/выключения выхода PD0 с заданным периодом:
 - а) 1 мс
- б) 5 мс
- в) 10 мс
- г) 20 мс

- д) 50 мс
- е) 500 мс
- ж) 2 c
- 3) 5 c

- 4. Реализуйте программу светофор:
- в дневном режиме продолжительность включения сигналов красный, желтый, зеленый, желтый 10c/2c/4c/1c;
- в ночном режиме включается только желтый свет 0,5с горит, 1с не горит.

Режим включения задается входом РВО.

Контрольные вопросы

- 1. Сколько таймеров содержит микроконтроллер ATmega8535? Какие из них 8-ми разрядные, 16-ти разрядные?
 - 2. Какие регистры определяют работу таймера Т1?
- 3. Поясните назначение регистров управления в целом? За что отвечает регистр управления А? В?
- 4. Какие биты изменяют режим работы таймера T1? Режим работы вывода канала A? B?
 - 5. Как установить коэффициент предделителя таймера Т1 равный 8? 1024?
 - 6. Объясните назначение регистров TIMSK и TIFR.
 - 7. Что выполняют инструкции sei и cli?
 - 8. Подсчитайте диапазон изменения задержек времени таймера Т1.
- 9. Рассчитайте коэффициент деления и значение регистра сравнения при работе таймера Т1 на частоте 2 Гц в режиме переполнения/сравнения по каналу А.

Работа № 8. Микропроцессорное управление скоростью двигателя постоянного тока по схеме ШИП-ДПТ с применением таймера Т1 в режиме ШИМ

Цель работы

Освоить теоретический и практический материал по работе 16-разрядного таймера Т1 микроконтроллера Atmega8535/Atmega32 в режиме широтно-импульсной модуляции. Применить приобретенные навыки при написании программы по управлению скоростью двигателя постоянного тока по схеме ШИП-ДПТ при симметричном или несмметричном управлении.

Программа работы

- 1. Изучить необходимый теоретический материал о регистрах и функционировании таймера Т1 в режиме ШИМ.
- 2. Разобраться в программе по использованию таймера T1, представленной в лабораторной работе.
- 3. Написать и отладить собственную программу с использованием таймера по заданию преподавателя.

Пояснения к работе

Таймер T1 микроконтроллера AtmegaXX может работать как в режиме подсчета временных интервалов, так и в режиме широтно-импульсной модуляции (ШИМ).

Поскольку таймер T1 содержит два канала и два регистра сравнения OCR1A и OCR1B, то он может сформировать два ШИМ-сигнала одновременно. Для этого два канала таймера подключены к соответствующим выводам микроконтроллера. Так, к выходу T1A таймера подключен вывод PB5, а к выходу канала T1B таймера T1 подключен вывод PD4 микроконтроллера.

В микроконтроллере AtmegaXX таймер T1, как и таймеры T0 и T2, работает в двух режимах широтно-импульсной модуляции: быстрый ШИМ и фазовый ШИМ.

В режиме быстрого ШИМ счетный регистр TCNT1 таймера производит формирование пилообразной развертки (рис. 1), инкрементируя свое значение по каждому импульсу с предделителя, который устанавливается в регистре управления TCCR1B таймера. При достижении счетным регистром максимального значения, определяемого в настройках регистров управления TCCR1A, TCCR1B происходит его автоматическое обнуление.

В режиме фазового ШИМ обеспечивается модуляция с высокой разрешающей способностью. Отличительной особенностью режима является сигнал развертки с двумя пологими фронтами — нарастающим и спадающим. Счетчик непрерывно производит счет импульсов с выхода предделителя таймера от минимального до максимального значения, а затем — от максимального до минимального. Принцип работы схемы формирования ШИМ пояснен на примере канала А таймера на рис. 2.

При неинвертирующем ШИМ соответствующий выход микроконтроллера (PD4 – для канала сравнения В, PD5 – для канала сравнения А таймера) очищается

при совпадении уставки, записанной в регистрах сравнения **OCR1A**, **OCR1B**, с величиной сигнала развертки, формируемой в регистре **TCNT1** при счете от минимального до максимального значения и устанавливается при счете от максимального до минимального значения (рис. 2). В случае инвертирующего ШИМ логика переключения вывода микроконтроллера инверсная.

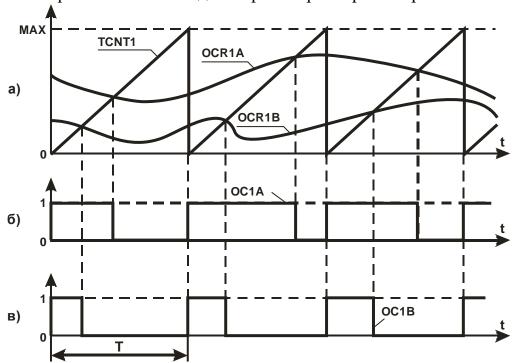


Рис. 1. Принцип работы таймера Т1 в режиме «Быстрый ШИМ»

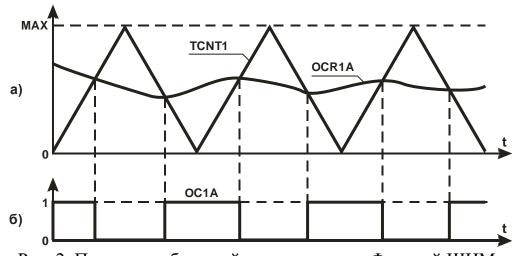


Рис. 2. Принцип работы таймера в режиме «Фазовый ШИМ»

Фазовый ШИМ, реализованный на таймере Т1 чрезвычайно полезен при практическом применении микроконтроллера в качестве устройства для управления, например, транзисторными преобразователями напряжения, когда необходимо тщательно выдерживать паузу между выключением одного сигнала и включением другого. Это требование легко реализуется использованием двух каналов сравнения таймера (рис. 3).

Канал сравнения A таймера инициализируется на неинвертирующий режим ШИМ, а канал сравнения B — на инвертирующий. В этом случае выходы OC1A и OC1B микроконтроллера будут работать в противофазе. Для реализации паузы Δt между изменением состояния каналов сравнения A и B в регистры сравнения

OCR1A и **OCR1B** необходимо занести уставки срабатывания, отличающиеся друг от друга на небольшую величину, соответствующую требуемой временной задержке (рис. 3).

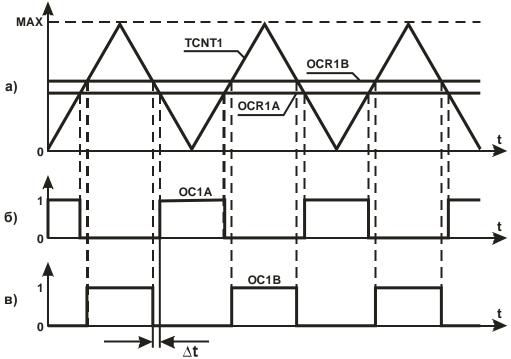


Рис. 3. Пример реализации задержки между двумя сигналами при использовании фазового ШИМ таймера T1

Разновидностью фазового ШИМ является частотно-фазовый Отличие от фазового ШИМ в этом режиме заключается в моменте обновления регистров сравнения OCR1A и OCR1B. Если в режиме фазового ШИМ обновление регистров происходит при достижении счетным регистром TCNT1 максимального значения, то при использовании частотно-фазового ШИМ обновление регистров происходит при достижении счетным минимального значения (рис. 4). Это позволяет получить в пределах периода TШИМ одинаковые по длительности участки включенного или выключенного состояния выходов OC1A, OC1B микроконтроллера t1=t3 (рис. 4).

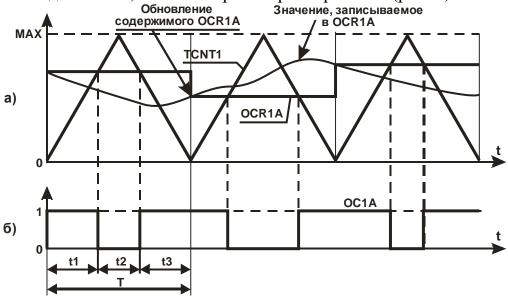


Рис. 4. Принцип работы таймера в режиме частотно-фазового ШИМ

Для управления режимами работы таймера используются регистры управления **TCCR1A**, **TCCR1B**.

Регистр управления **TCCR1A** состоит из управляющих бит, пояснение которых приведено в табл. 1.

Табл. 1. Регистр управления TCCR1A таймера T1

Бит	7	6	5	4	3	2	1	0
Название	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10

Биты 7 и 6 – COM1A1 и COM1A0. В режиме ШИМ эти биты служат для управления выводом OC1A микроконтроллера (PD5). Комбинацией управляющих бит можно либо отключить вывод от таймера, либо инициализировать инвертирующий или неинвертирующий режим ШИМ.

Табл. 2. Функции вывода ОС1А таймера Т1 в режиме ШИМ

COM1A1	COM1A0	Пояснение			
0	0	Вывод ОС1А отключен от таймера			
0	1	При установке бита WGM13 в регистре TCCR1B WGM13=0 вывод отключен от таймера. При WGM13=1 изменение состояния ОС1А на противоположное при совпадении.			
1	0	Неинвертирующий ШИМ. Очистка вывода при совпадении при счете вверх и установка при совпадении при счете вниз.			
1	1	Инвертирующий ШИМ. Установка вывода при совпадении при счете вверх и обнуление при совпадении при счете вниз.			

Биты 5 и 4 – COM1B1 и COM1B0. Назначение этих бит аналогично вышеописанному для бит COM1A1, COM1A0, но управляют выводом OC1B микроконтроллера (PD4). В режиме COM1B1=0, COM1B0=1 вывод отключен от таймера.

Биты 3 и 2 – FOC1A и FOC1B. Эти биты действуют только в обычном режиме работы при подсчете временных интервалов. При записи в них логической «1» происходит срабатывание прерывания по совпадению соответствующего канала таймера и изменение выводов таймера ОС1A и ОС1В в соответствии с настройками бит COM1A1:COM1A0, COM1B1:COM1B0.

Биты 1 и 0 – WGM11, WGM10. Эти биты определяют режим работы таймера вместе с управляющими битами регистра TCCR1B.

Регистр управления **TCCR1B** состоит из управляющих бит, пояснение которых приведено в табл. 3.

Табл. 3. Регистр управления TCCR1B таймера T1

Tuon: 5.1 etherp ynpublienin 1 eentib runniepu 11								
Бит	7	6	5	4	3	2	1	0
Название	ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10

Бит 7 – ICNC1. Этот бит включает функцию фильтрации внешнего сигнала, поступающего на вывод PB1 микроконтроллера, когда таймер используется в качестве счетчика. Установка бита увеличивает надежность работы таймера. При

активации этого бита между подачей сигнала на вывод РВ1 и срабатыванием схемы счета проходит 4 периода тактовой частоты.

Бит 6 – ICES1. Этот бит определяет активный фронт сигнала на входе PB1. При ICES1=0 таймер срабатывает по спадающему фронту сигнала, иначе – по нарастающему фронту.

Бит 5. Зарезервирован и не используется.

Биты 4 и 3 – WGM13, WGM12. Эти биты вместе с битами WGM11, WGM 10 регистра TCCR1A определяют режим работы таймера (табл. 4).

Табл. 4. Задание режима работы таймера Т1

Режим	WGM13	WGM12	WGM11	WGM10	Название режима	Вершина	Обновление ОСR1x	Переполнение TOV1
0	0	0	0	0	Нормальный режим	0xFFFF	Немедленно	Максимум
1	0	0	0	1	Фазовый ШИМ, 8 бит	0x00FF	На вершине	Минимум
2	0	0	1	0	Фазовый ШИМ, 9 бит	0x01FF	На вершине	Минимум
3	0	0	1	1	Фазовый ШИМ, 10 бит	0x3FFF	На вершине	Минимум
4	0	1	0	0	Очистка при совпадении	OCR1A	Немедленно	Максимум
5	0	1	0	1	Быстрый ШИМ, 8 бит	0x00FF	На вершине	На вершине
6	0	1	1	0	Быстрый ШИМ, 9 бит	0x01FF	На вершине	На вершине
7	0	1	1	1	Быстрый ШИМ, 10 бит	0x03FF	На вершине	На вершине
8	1	0	0	0	Частотно-фазовый ШИМ	ICR1	Внизу	Минимум
9	1	0	0	1	Частотно-фазовый ШИМ	OCR1A	Внизу	Минимум
10	1	0	1	0	Фазовый ШИМ	ICR1	На вершине	Минимум
11	1	0	1	1	Фазовый ШИМ	OCR1A	На вершине	Минимум
12	1	1	0	0	Очистка при совпадении	ICR1	Немедленно	Максимум
13	1	1	0	1	_		_	_
14	1	1	1	0	Быстрый ШИМ	ICR1	На вершине	На вершине
15	1	1	1	1	Быстрый ШИМ	OCR1A	На вершине	На вершине

Биты 3...0 – CS12...CS10. Эти биты определяют источник задания частоты таймера Т1 и предделитель таймера (табл. 5).

Табл. 5. Функции бит CS12, CS11, CS10 таймера T1

CS12	CS11	CS10	Пояснение
0	0	0	Нет источника. Таймер остановлен.
0	0	1	Предделитель $f_{CLK}/1$
0	1	0	Предделитель $f_{CLK}/8$
0	1	1	Предделитель $f_{CLK}/64$
1	0	0	Предделитель $f_{CLK}/256$
1	0	1	Предделитель $f_{CLK}/1024$
1	1	0	Внешний сигнал на выводе Т1 (по спадающему фронту)
1	1	1	Внешний сигнал на Т1 (по нарастающему фронту)

В режиме широтно-импульсной модуляции нет необходимости инициализировать прерывания по совпадению или переполнению таймера Т1, поэтому описание регистров TIFR и TIMSK в данной работе не приводится.

Пример. Перевести таймер Т1 в режим 10-битного ШИМ и управлять скоростью вращения нереверсивной схемы электродвигателя постоянного тока. Предусмотреть 2 скорости вращения электродвигателя, сигнал задания задавать дискретно с помощью тумблеров, подключенных к порту ввода/вывода А. Организовать предустановленные скорости необходимо в виде таблицы, хранящейся во FLASH-памяти контроллера.

```
//----
;Программа для управления электродвигателем постоянного тока.
;Входы:
         РАО...РА2 - дискретные сигналы задания скорости
;
; Выходы:
         PD5 - ШИМ-сигнал на выходе микроконтроллера
.include"m8535def.inc" ;подключение стандартной библиотеки
.cseq
                       ;начало сегмента кода
.org$0
reset:
  ldi r16,low(RAMEND) ;Инициализация стека
  ldi r17,high(RAMEND)
  out spl,r16
  out sph, r17
  ldi r16,0x00
                  ;Инициализация портов ввода/вывода
  out DDRA,r16
                  ;Порт А - на ввод информации
  ldi r16,0xFF
  out PORTA, r16
  out DDRD,r16
                  ;Порт D - на вывод информации.
  clr r16
  out OCR1AH, r16 ; обнуление регистров Т1
  out OCR1AL, r16
  out TCNT1H, r16
  out TCNT1L,r16
  ldi r16,0xC3 ; 0000 0011 - настройка таймера Т1 в режиме
  out TCCR1A,r16 ; 10-ти разрядного быстрого ШИМ ldi r16,0x1A ; 0001 1010 — пуск таймера T1
  out TCCR1B,r16
  ldi r31,0x02
                  ;Передача адреса FLASH в старший байт Z
main:
  in r30,PINA
                  ;происходит считывание данных, поступающих на
  andi r30,0x01
                  ;порт А и выделение младшего бита
  lsl r30
                  ;чтение 2 байт данных
                 ;Считывание старшего байта данных из FLASH
  lpm r17,Z+
                  ;Считывание младшего байта данных из FLASH
  lpm r16,Z
  ошt OCR1AH,r17 ;Передача считанных данных в регистр сравнения
  out OCR1AL, r16 ; канала А таймера Т1
  rjmp main
                  ;По адресу 100 осуществляется
.org$100
.db 0x00,0x7F,0x03,0xF8 ; запись 2 скоростей ЭД по 2 байта
//-----
```

Рассмотрим программу более подробно.

1. Сначала происходит подключение библиотеки контроллера Atmega 8535. И перехож к 0 адресу программы:

```
.include"m8535def.inc"
```

```
.cseg
.org$0
```

2. По метке reset осуществляется инициализация портов ввода/вывода и таймера/счетчика Т1. В соответствии с заданием порт А инициализируется на ввод, а порт D – на вывод информации:

```
reset:
     ldi r16,low(RAMEND)
     ldi r17,high(RAMEND)
     out spl,r16
     out sph, r17
     ldi r16,0x00
     out DDRA, r16
     ldi r16,0xFF
     out PORTA, r16
     out DDRD, r16
     clr r16
     out OCR1AH, r16
     out OCR1AL, r16
     out TCNT1H,r16
     out TCNT1L, r16
     ldi r16,0xC3
     out TCCR1A, r16
     ldi r16,0x1A
     out TCCR1B, r16
```

Таймер/счетчик Т1 инициализируется на режим быстрого ШИМ, при этом задействуется канал сравнения OCR1A, вывод которого работает в режиме неинвертирующего ШИМ.

3. По метке main осуществляется переход на основной цикл программы. В этом цикле осуществляется опрос порта ввода/вывода A, формирование адреса FLASH-памяти в соответствии с комбинацией управляющих входов, а также передача данных из FLASH в регистры сравнения таймера T1:

```
in r30,PINA
andi r30,0x01
lsl r30
lpm r17,Z+
lpm r16,Z
out OCR1AH,r17
```

main:

out OCRIAL, r16

rimo main

rjmp main

Сначала осуществляется считывание данных порта А и выделение младшего бита данных.

Считанные данные преобразуются в адрес FLASH памяти контроллера. Работа с FLASH-памятью контроллера реализуется через специальный Z-регистр, состоящий из двух POH R31(zh):R30(zl). Для чтения из FLASH необходимо в Z-регистр записать адрес в памяти контроллера, а затем специальной командой lpm считать данные из памяти по указанному адресу.

Поскольку начало массива с предустановленными скоростями соответствует адресу \$100, то в регистр Z при необходимости считывания данных из FLASH необходимо записывать адреса от \$200. По этой причине в регистр r31 записывается число 0x02, а в регистр r30 записывается адрес, формируемый умножением кода, считанного из PINA, на число 2 (1s1 r30). Таким образом, при комбинации PINA=0000 0000 в Z-регистр будет записан адрес 0x0200, при комбинации PINA=0000 0001 в Z-регистр будет записан адрес 0x0202 и т.д. То есть адрес FLASH будет всегда указывать на старший байт предустановленной скорости.

При считывании данных из FLASH командой 1pm r17, Z+ в регистр r17 записывается значение FLASH по указанному адресу, то есть старший байт уставки по скорости, а затем адрес FLASH автоматически инкрементируется и при следующем обращении к FLASH командой 1pm r16, Z в регистр r16 будет записано уже содержимое памяти по адресу, указанному в Z+1, то есть младший байт уставки по скорости.

После считывания данных из памяти они передаются в регистр сравнения канала A таймера T1 (out OCR1AH,r17;out OCR1AL,r16). После этого процесс повторяется.

4. По адресу 100 из FLASH-памяти необходимо записать предустановленные скорости двигателя, в качестве которых выступает значение регистра сравнения OCR1A таймера T1:

```
.org$100
.db 0x00, 0x7F, 0x03, 0xF8
```

Память разделена на страницы, в которых содержатся 2 байта информации – старший и младший. В случае, если необходимо считать один байт, необходимо умножать адрес страницы на 2. Так, если по адресу \$100 содержатся два байта: \$100(zh) - 0x00 и \$100(zl) - 0x7F, то каждый из этих байт имеет следующий адрес: \$200 - 0x00 и \$201 - 0x7F.

Во FLASH – памяти записаны следующие уставки скорости:

- скорость 1: 0x007F;- скорость 2: 0x03F8.

Задание на выполнение

1. Разработать программу «Микропроцессорное управление скоростью двигателя постоянного тока по схеме ШИП-ДПТ», позволяющую регулировать скорость ДПТ изменением скважности выходных сигналов таймера Т1. Во всех вариантах задания должен быть реализован реверс двигателя. Входные сигналы: разрешение работы системы, дискретные входы задания скорости, реверс. Выходные сигналы: дискретные сигналы и сигналы ШИМ, управляющие работой широтно-импульсного преобразователя в симметричном или несимметричном режимах. Режим работы ШИП, скорости вращения (скважности) выбираются по таблицам в зависимости от персональных данных обучаемых.

Выбор исходных данных выполняется по таблицам:

а) Режим работы ШИП, тип, разрдность и частота ШИМ выбираются по первой букве фамилии:

Первая буква	Режим управления	Тип ШИМ	Разрядность	Частота ШИМ
фамилии	ШИП		ШИМ	
А, Н, Щ	Симметричный	фазовый	8	f>8кГц
Б, О, Э	Несимметричный	фазовый	9	500Гц <f≤4кгц< td=""></f≤4кгц<>
В, П, Ю	Симметричный	быстрый	10	2кГц <f≤16кгц< td=""></f≤16кгц<>
Г, Р, Я	Несимметричный	быстрый	8	1кГц <f≤8кгц< td=""></f≤8кгц<>
Д, С	Симметричный	фазовый	9	2кГц <f≤16кгц< td=""></f≤16кгц<>
E, T	Несимметричный	фазовый	10	f>2кГц
Ж, У	Симметричный	быстрый	8	f>8кГц
3, Ф	Несимметричный	быстрый	9	1кГц <f≤8кгц< td=""></f≤8кгц<>
И, Х	Симметричный	фазовый	10	400Гц <f≤3,2кгц< td=""></f≤3,2кгц<>
К, Ц	Несимметричный	фазовый	8	f≤4кГц
Л, Ч	Симметричный	быстрый	9	f>8кГц
М, Ш	Несимметричный	быстрый	10	f≤2кГц

в) Скорости вращения двигателя (относительное значение) задаются датой рождения по таблице:

омдения по	1
Дата	Скорости
рождения	вращения
1, 16	0,1 / 0,2
	0,4 / 0,8
2, 17	0,05 / 0,1
	0,2
3, 18	0,15 / 0,9
4, 19	0,25 /0,5
	0,75
5, 20	0,04 / 0,12
	0,24 / 0,48

Дата	Скорости
рождения	вращения
6, 21	0,08 / 0,16
	0,24 / 0,32
7, 22	0,07 / 0,21
	0,63
8, 23	0,11 / 0,55
9, 24	0,09 / 0,27
	0,81
10, 25	0,03 / 0,09
	0,27 / 0,81

Дата	Скорости			
рождения	вращения			
11, 26	0,12 / 0,18			
	0,36 /0,72			
12, 27	0,14 / 0,21			
	0,42			
13, 28	0,21 / 0,63			
14, 29	0,17 / 0,34			
	0,51			
15, 30,	0,19 / 0,29			
31	0,49 / 0,99			

В отчете привести:

- персональные данные и выбор параметров;
- функциональную схему электропривода;
- таблицу расчета скважности для заданных скоростей двигателя, включая реверс;
- временные диаграммы работы силовых ключей для одной из скоростей и реверса с учетом скважности сигнала и частоты ШИМ;
 - настройку таймера и расчет времени задержки, реализованной на таймере;
 - листинг программы;
 - блок-схему алгоритма.
- 2. Составить программу для своего варианта, которая реализует вывод сигнала с ШИМ с изменением скважности для заданных таймеров по коду входных сигналов (биты задания).

Варианты задания

Ma	Ta ()	Dansers	Пуултарат	D	F
№	Таймер (ы),	Режим	Диапазон	Входы (биты)	Биты задания,
вар	канал (ы)		частот ШИМ		количество дискретных
					значений, диапазон
	T72	F / F 11	51000 100001	7.47	изменения скважности
1	T2	Б/ПиИ	[1000, 10000]	РА7-переключает	PC5PC7, 8
		- /		между П и И	положений, 00,5
2	Т0 и Т2	Ф/И	[1000, 10000]	РАО- включает	PA4PA7, 16
				таймер Т0 или Т2	положений, 0,10,9
3	Т0	Б/И	[100, 1000]	РС5 – меняет	Порт А, 256
				частоту ШИМ	положений, 01
4	Т0 и Т2	Ф/ПиИ	[200, 1000]	Одновременно	PC0PC3, 16
				работают 2 канала	положений, 00,75
5	T2	БиФ/	<200	РАО – БиФ	PC0PC4, 32
		ПиИ		РА7 – ПиИ	положения, 0,20,8
6	Т0 и Т2	Б/П	>10000	РА0 - вкл Т0	PB0PB2, 8
				PA1 - вкл Т2	положений, 01
7	T0	Ф/И	>10000	РС0-вкл/откл	PA0PA3, 16
					положений, 01
8	T0	ФиБ/И	<200	РА4 - переключает	Порт С, 256
				между Ф и Б	положений, 01
9	T2	Б/П	[1000, 10000]	PC1 – изменяет	PA2PA3, 4
			[,]	частоту ШИМ	положения, 00,5
10	Т0 и Т2	Ф/ПиИ	[1000, 10000]	РС7 - выбирает T0	PC0PC5, 64
10	101112	1 / 11 11 11	[1000, 10000]	или Т2	положения, 01
11	Т0 и Т2	Б/И	[200, 1000]	PA0-0, PA1-T0,	PC4PC7, 16
11	10 11 12	D / 11	[200, 1000]	РА2-Т2,РА3-Т0 и Т2	положения, 01
12	Т0	Φ/Π	[30, 35000]	PC0PC2 - 6	Порт А, 256
12		4 / 11	[50, 55000]	частот ШИМ	положения, 00,5
13	T2	Б/ПиИ	<200	РАО – выбор П и И	PA2PA5, 16
13	12		<200	ТИО – выобр 11 и И	положений, 01
14	Т0 и Т2	Φ/Π	>10000	РА0=0-Т0 и Т2 выкл	РС3РС5, 8
14	10 И 12	Ψ/Π	>10000	РА0=1- ТО и Т2 выкл	положений, 00,75
15	Т0	Б/И	>10000	PC7- выкл/вкл	PB0PB3, 16
13	10	D / YI	>10000	FC/- BBIKJI/BKJI	· · · · · · · · · · · · · · · · · · ·
1.6	Т0 и Т2	Ф/ПиИ	<200	DAO MANAGEMENT OF THE PARTY OF	положений, 00,8
16	10 и 12	Ф/пии	<200	РАО- меняет режим	PA3PA7, 32
				сПнаИТОиТ2	положения, 01
17	TO	F / 11	[1000 10000]	одновременно	DDO DDO O
17	T2	Б/И	[1000, 10000]	РВ3 – вкл/выкл	PB0PB2, 8
10	TO TO	* 5/5	F1000 10000	выход таймера	положений, 01
18	Т0 и Т2	ФиБ/П	[1000, 10000]	РА7-ФиБ	PA0PA3, 16
		иИ		РА6-ПиИ	положений, 00,5
19	Т0 и Т2	Б/П	[200, 1000]	PA4-T0	PC1PC3, 8
				PA5-T2	положений, 0,10,9
20	T0	ФиБ/И	[200, 1000]	РАО – вкл/выкл ТО	PA4PA7, 16
				РА1 – БиФ	положений, 0,251
21	T2	Б/ПиИ	<200	РС0 – ПиИ	PB0PB4, 32
					положений, 01
22	Т0 и Т2	Ф/ПиИ	>10000	РАЗ- вкл ТО или Т2	PA3PA7, 32
					положений, 00,8
23	ТО	Б/И	>10000	РА0- частота ШИМ	РС, 256 положений,
					01
-	*	•	•		

24	Т0 и Т2	Ф/ПиИ	<200	РА0 - выбор Т0 или	PA5PA7, 8
				T2, PA1 - выбор П	положений, 0,20,9
				или И	
25	Т0 и Т2	ФиБ/	[1000, 10000]	РС6 - выбор Ф или	PB0PB2, 8
		ПиИ		В, РС7 - выбор П	положений, 00,75
				или И	
26	T0	Б/И	[200, 1000]	РА7- вкл/выкл	PA0PA6, 128
					положений, 01
27	T2	Ф/И	[30, 35000]	РА0РА2 – выбор	PC0PC5, 64
				частоты ШИМ	положения, 00,8
28	Т0 и Т2	Б/ПиИ	[1000, 10000]	РС1-выбирает канал	PB6PB7, 4
					положения, 01
29*	T0	Φ/Π	>10000	sin ШИМ: f=var,	РА0, РА1: 4 частоты
				A=1	ШИМ – 5,10,20,40 Гц
30*	T2	Б/П	>10000	sin ШИМ: f=50Гц,	РС0РС2: 8 уровней
				A = var	амплитуды - 01,0

Условные обозначения: Б – быстрый ШИМ, Ф – фазовый ШИМ, П – прямой ШИМ, И – инверсный

В отчете привести:

- исходное задание;
- функциональную схему;
- представить расчет скважности, настройку таймера
- запись данных (скважности) в ОЗУ или ПЗУ;
- листинг программы;
- дизассемблированную программу;
- алгоритм.

Контрольные вопросы

- 1. Укажите разрядность таймера Т0? Т1? Т2?
- 2. Какие функции в программе могут выполнять таймеры?
- 3. Перечислите регистры ввода/вывода, управляющие работой таймера Т0?
- 4. В каких режимах с ШИМ могут работать таймеры микроконтроллера ATmega8535?
 - 5. Как настроить таймеры Т1 для работы в режиме быстрого ШИМ?
 - 6. Какую функцию выполняет счетный регистр TCNT1 в режиме ШИМ?
 - 7. Для каких целей используется регистр сравнения OCR1A? OCR1B?
- 8. Какие значения необходимо записать в регистр OCR1A для получения скважности 0, 0,5 и 0,75 при 8-ми битном ШИМе?

Работа № 9. Аналого-цифровой преобразователь

Цель работы

Освоить теоретический и практический материал по работе 10-разрядного аналого-цифрового преобразователя (АЦП) микроконтроллера AtmegaXX. Применить приобретенные навыки при написании программы.

Программа работы

- 1. Изучить необходимый теоретический материал о принципах работы и функционирования встроенного АЦП микроконтроллера AtmegaXX и освоить его инициализацию.
- 2. Разобраться в программе по использованию АЦП, представленной в лабораторной работе.
- 3. Написать и отладить собственную программу с использованием АЦП в соответствии с вариантом.

Пояснения к работе

При использовании микроконтроллера в качестве устройства управления каким-либо процессом часто возникает необходимость оценивать величины аналоговых сигналов, в качестве которых могут выступать сигналы с задающих потенциометров, датчиков обратных связей, термопар и др.

Однако, поскольку микроконтроллер является цифровым устройством, непосредственно оценить величину аналогового сигнала путем опроса ножки микроконтроллера, к которой он подключен, не представляется возможным.

Для преобразования аналогового сигнала в цифровой с целью его последующей обработки предназначен **аналого-цифровой преобразователь** (АЦП), встроенный в микроконтроллеры ATmega8535, ATmega32 и другие контроллеры семейства AVR фирмы Atmel.

АЦП микроконтроллера выполнен 10-разрядным, то есть аналоговый сигнал, поступающий на его вход, может быть разложен на 2^{10} =1024 дискреты. Таким образом, фактически, разрядность АЦП отвечает за его разрешающую способность, или чувствительность преобразователя. Разрешающая способность АЦП — это минимальная разница аналогового сигнала при двух измерениях, которую еще различает преобразователь.

Для правильного функционирования АЦП ему необходим некий «эталон», то есть напряжение, которое будет приниматься за базу, относительно которой будет измеряться подаваемый на АЦП аналоговый сигнал. Это эталонное напряжение принято называть опорным напряжением. В качестве источника опорного напряжения в микроконтроллерах Atmega8535 может выступать напряжение питания контроллера, внутренний стабилизированный источник 2,56В или внешний сигнал, подключаемый к выводу AREF микросхемы контроллера.

Минимальное напряжение, которое АЦП сможет распознать, можно рассчитать по формуле:

рассчитать по формуле:
$$U_{min} = \frac{1}{2^n} \cdot U_{ref}.$$

При использовании в качестве источника опорного напряжения питания микроконтроллера 5 В:

$$U_{min} = \frac{1}{2^{10}} \cdot 5 = 4,88 \text{ MB}.$$

Ввиду того, что в качестве АЦП в микроконтроллерах AVR используется **АЦП последовательного приближения**, процесс преобразования аналогового сигнала в пропорциональный ему цифровой код занимает некоторое время. Упрощенная структура АЦП последовательного приближения представлена на рис. 1.

Рис. 1. Структура АЦП последовательного приближения

АЦП состоит из компаратора, регистра последовательного приближения и цифро-аналогового преобразователя. Работает АЦП следующим образом.

В начале преобразования все выходы регистра последовательного приближения устанавливаются в состояние логического «0», за исключением старшего разряда: 10 0000 0000. При этом на выходе внутреннего цифроаналогового преобразователя формируется аналоговый сигнал, равный половине диапазона АЦП (рис. 2, интервал t0..t1). Компаратор при этом измеряет разницу между входным сигналом и сигналом с выхода ЦАП.

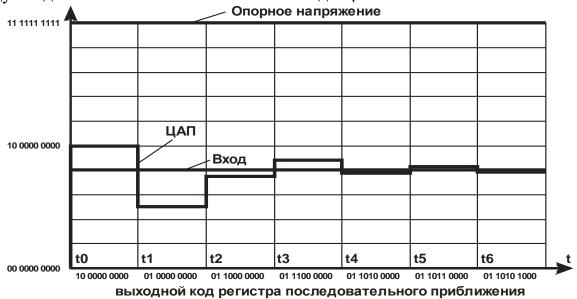


Рис. 2. Принцип работы АЦП последовательного приближения

Если напряжение на входе АЦП оказывается больше, чем установленное на выходе ЦАП, то регистр последовательного приближения сохраняет принятое изначально состояние 10 0000 0000. Если же измеряемое напряжение оказывается меньше подаваемого с ЦАП, регистр устанавливается в состояние 01 000 0000 (рис. 2, интервал t1-t2).

Если принятое состояние 01 0000 0000 оказывается меньше измеряемого сигнала, 8-й бит кода закрепляется и 7-й бит кода регистра последовательного приближения устанавливается в единичное состояние: 01 1000 0000 (рис. 2, интервал t2-t3). Поскольку и при прибавлении этого бита сигнал на выходе ЦАП оказался меньше входного (рис. 2), 7-й бит закрепляется, а к коду прибавляется 6-й бит: 01 1100 0000 (рис. 2, интервал t3-t4).

В этом случае выходной сигнал ЦАП оказывается больше сигнала на входе, поэтому 6-й бит принимается равным «0», а к коду прибавляется 5-й бит: 01 1010 0000 (рис. 2, интервал t4-t5). Далее процесс повторяется до установки последнего младшего бита кода регистра последовательного приближения.

По окончании процесса преобразования результат передается в два 8разрядных регистра **ADCH** и **ADCL**.

В микроконтроллерах AVR время преобразования АЦП можно регулировать. Для этого в структуру преобразователя встроен предделитель, подобный тому, который встроен в таймеры Т0...Т2 микроконтроллера. Необходимо отметить, что с уменьшением времени преобразования уменьшается точность получаемого результата. Рекомендуемая частота работы АЦП находится в пределах 50...200 кГц. При работе преобразователя в этом диапазоне обеспечивается минимальная погрешность при получении результата.

Для того, чтобы правильно рассчитать время преобразования АЦП, необходимо помнить, что процесс преобразования занимает 13 тактов АЦП при его непрерывной работе и 25 циклов при его первом запуске. Аналого-цифровой преобразователь микроконтроллера AtmegaXX содержит 8 входов, подключенных к выводам порта ввода/вывода А. Поскольку преобразователь одновременно может работать только с одним входом, они коммутируются специальным коммутатором (мультиплексором), управляемым программно с помощью регистра **ADMUX** (табл. 1).

Табл. 1 Регистр управления мультиплексором АЦП **ADMUX**

Бит	7	6	5	4	3	2	1	0
Название	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0

Биты 6 и 7 – REFS1, REFS0. С помощью этих бит определяется источник опорного напряжения АЦП (табл. 2).

Табл. 2.Задание источника опорного напряжения АЦП

REFS1	REFS0	Источник опорного напряжения				
0	0	Внешний источник, подключенный к выводу AREF.				
0 1		Напряжение питания АЦП, подаваемое на вывод AVCC. К выводу AREF				
U	1	должен быть подключен конденсатор.				
1	0	Комбинация не используется.				
1	1	Внутренний стабилизированный источник 2,56 В. К выводу AREF должен				
1	1	быть подключен конденсатор.				

Бит 5 – ADLAR. Этот бит отвечает за «левое» выравнивание результата. Поскольку для хранения 10-разрядного результата преобразования АЦП используются два 8-разрядных регистра ADCH и ADCL, некоторые биты регистра ADCH остаются неиспользуемыми. Если ADLAR=1, то результат преобразования АЦП сохраняется «левым» выравниванием по регистру ADCH. Это особенно

удобно, если пользователю не нужны два младших бита результата преобразования АЦП (табл. 3).

Табл. 3. Представление результата преобразования АЦП в зависимости от управляющего бита ADLAR

ADLAR=0									
ADCH	_	_	_	_	ı	_	ADC9	ADC8	
ADCL	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	
ADLAR=1									
ADCH	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	
ADCL	ADC1	ADC0	_	_	_	_	_	_	

Биты 4...0 – MUX4...MUX0. С помощью этих бит определяется, какой из входов АЦП подключен к преобразователю. Здесь различают два режима работы входов АЦП – одиночный и дифференциальный (табл. 4).

Табл. 4. Определение логики работы входов АЦП в соответствии с битами MUX4...MUX0

MUX4MUX0	Одиночные входы	Положительный дифференциальный вход	Отрицательный дифференциальный вход	Коэффициент усиления
00000	ADC0			
00001	ADC1			
00010	ADC2			
00011	ADC3			
00100	ADC4		_	
00101	ADC5			
00110	ADC6			
00111	ADC7			
01000		ADC0	ADC0	10
01001		ADC1	ADC01	10
01010		ADC0	ADC0	200
01011		ADC1	ADC0	200
01100		ADC2	ADC2	10
01101		ADC3	ADC2	10
01110		ADC2	ADC2	200
01111		ADC3	ADC2	200
10000	_	ADC0	ADC1	1
10001		ADC1	ADC1	1
10010		ADC2	ADC1	1
10011		ADC3	ADC1	1
10100		ADC4	ADC1	1
10101		ADC5	ADC1	1
10110		ADC6	ADC1	1
10111		ADC7	ADC1	1
11000		ADC0	ADC2	1
11001		ADC1	ADC2	1
11010		ADC2	ADC2	1
11011	_	ADC3	ADC2	1
11100		ADC4	ADC2	1
11101		ADC5	ADC2	1
11110	1,22 B		_	

MUX4MUX0	Одиночные входы	Положительный дифференциальный вход	Отрицательный дифференциальный вход	Коэффициент усиления
11111	0 B			

При решении типовых задач обычно используется одиночное включение входов (табл. 4), однако в некоторых случаях (например, для исключения воздействия на входы микроконтроллера сигнала помехи) возникает необходимость использования дифференциальных входов. В этом случае АЦП измеряет сигнал не между конкретным аналоговым входом ADC0...ADC7 и общей точкой, а между положительным и отрицательным дифференциальными входами (табл. 4).

В некоторых случаях, когда необходимо выловить разницу в очень близких сигналах, полезно перед аналого-цифровым преобразованием эти сигналы усилить. С этой целью перед подачей на АЦП микроконтроллер может усилить дифференциальный сигнал в 1...10...200 раз (табл. 4).

Для калибровки преобразователя можно также ко всем входам подключить источник стабильного напряжения 1,22 В (MUX4...0=11110) или общую точку (MUX4...0=11111).

Настройка аналого-цифрового преобразователя и управление им осуществляется с помощью регистра управления АЦП **ADCSRA** (табл. 5).

Табл. 5. Регистр управления АЦП ADCSRA

Бит	7	6	5	4	3	2	1	0
Название	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0

- **Бит 7 ADEN.** Этот бит разрешает использование АЦП. Записью логического «0» в ADEN АЦП будет немедленно выключено.
- **Бит 6 ADSC.** Запись логической «1» в этот бит разрешает преобразование АЦП. Необходимо записывать в ADCS логическую «1» для начала каждого преобразования. По окончании преобразования бит будет автоматически сброшен в состояние логического «0».
- **Бит 5 ADATE.** Записью логической «1» в этот бит разрешается автоматический запуск АЦП по событию. Событие выбирается комбинацией битов ADTS в регистре **SFIOR** микроконтроллера.
- **Бит 4 ADIF.** Этот бит флаг готовности результата преобразования АЦП. Устанавливается автоматически по окончании процесса преобразования.
- **Бит 3 ADIE.** Этот бит маска прерывания готовности результата преобразования АЦП. Если ADIE=1, то при появлении флага готовности результата ADIF будет сгенерировано прерывание.
- **Биты 2...0 ADPS2...ADPS0.** Комбинация этих бит устанавливает делитель тактовой частоты процессора для тактирования АЦП (табл. 6).

Табл. 6. Предделитель АЦП микроконтроллера Atmega8535

ADPS2	ADPS1	ADPS0	Предделитель
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8

1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

В регистре специальных функций битами ADTS2...ADTS0 задается источник автозапуска АЦП при активации этой функции в регистре **ADCSRA**.

Табл. 7. Регистр специальных функций контроллера SFIOR

Бит	7	6	5	4	3	2	1	0	
Название	ADTS2	ADTS1	ADTS0	_	_	_	_	_	

Табл. 8. Источник автозапуска АЦП (биты ADTS2...ADTS0)

ADTS2	ADTS1	ADTS0	Источник автозапуска
0	0	0	Непрерывное преобразование АЦП
0	0	1	Аналоговый компаратор
0	1	0	Внешнее прерывание INT0
0	1	1	Прерывание по совпадению таймера Т0
1	0	0	Прерывание по переполнению таймера Т0
1	0	1	Прерывание по совпадению канала В таймера Т1
1	1	0	Прерывание по переполнению таймера Т1
1	1	1	Прерывание по захвату сигнала таймера Т1

Пример 1. Подать аналоговый сигнал на вход ADC2 АЦП и вывести 8-разрядный результат на порт ввода/вывода С. Не использовать прерывание готовности результата преобразования АЦП.

```
;-----
Входы:
    РА2 - аналоговый вход АЦП
Выходы:
     РС0...РС7 - индикация кода результата преобразования.
.include"m8535def.inc"
                        ;Подключение стандартной библиотеки
                         ;Начало сегмента кода
.cseq
.org$0
                         ;по адресу 0
  ldi r16,low(RAMEND) ;Запись адреса вершины стека
  ldi r17, high(RAMEND) ;В конце памяти данных
  out spl,r16
  out sph, r17
  ldi r16,0xFB
                    ;Инициализация неиспользуемых ножек порта А
  out PORTA, r16
                   ;на ввод информации
  clr r16
                    ;Используемый вход АЦП не инициализируется
  out DDRA, r16
  out PORTC, r16
                    ;Инициализация порта С на вывод информации
  ser r16
  out DDRC, r16
  ldi r16,0x62
                    ;Инициализация мультиплексора АЦП
  out ADMUX, r16
  ldi r16,0xC7
  out ADCSRA, r16
                   ;Инициализация АЦП и его запуск
main:
                    ; Начало основного цикла
  in r16,ADCSRA
                    ;Опрос регистра ADCSRA
```

```
SBRC r16,4
                    ;Если
                            бит
                                      чист,
                                              TO
                                                   следующая
                                                                команда
  пропускается
  rcall ADC_ready ;Иначе вызов ADC_ready
  rjmp main
                    ;Возврат на main
ADC_ready:
                    ;По метке ADC ready
  in r16,SREG
                    ; сохранение значения регистра SREG
                    ;Обнуление флага ADIF записью в него логической
  ldi r17,0x97
  \ll 1 \gg
  out ADCSRA, r17
  in r17,ADCH
                    ;Считывание результата преобразования из АДСН
  out PORTC, r17
                    ;и вывод результата на PORTC
  ldi r17,0xC7
                    ;Перезапуск АЦП
  out ADCSRA, r17
  out SREG, r16
                    ; Восстановление регистра SREG
                    ;возврат по адресу, хранящемуся в стеке
  ret
```

Рассмотрим программу более подробно.

1. Сначала происходит подключение стандартной библиотеки контроллера Atmega8535, указывается адрес начала сегмента кода и выполняется инициализация стека, вершина которого располагается в конце памяти данных:

```
.include"m8535def.inc"
.cseg
.org$0
    ldi r16,low(RAMEND)
    ldi r17,high(RAMEND)
    out spl,r16
    out sph,r17
```

2. Производится инициализация портов ввода/вывода. В программе используются порты ввода/вывода А и С. При этом необходимо запомнить, что, поскольку АЦП использует альтернативные функции порта А, то выводы порта, используемые АЦП, инициализировать не нужно. Остальные выводы рекомендуется «притянуть» к уровню логического «0» или «1» во-избежание наведения на них помех. Порт С инициализируется на вывод информации:

```
ldi r16,0xFB
out PORTA,r16
clr r16
out DDRA,r16
out PORTC,r16
ser r16
out DDRC,r16
```

3. Далее выполняется инициализация АЦП установкой необходимых управляющих бит в регистрах ADMUX и ADCSRA:

```
ldi r16,0x62
out ADMUX,r16
ldi r16,0xC7
out ADCSRA,r16
```

В качестве источника сигнала опорного напряжения выбирается напряжение электропитания процессора, поданное на вывод AVCC. Также выбирается «левое» выравнивание результата преобразования ADLAR. Выбирается второй канал АЦП (ldi r16,0x62;out ADMUX,r16). В регистра ADCSRA устанавливаются биты ADEN (включение АЦП), ADSC (запуск преобразования АЦП), а также выбирается предделитель clk/128 для повышения точности преобразования.

4. В основном цикле ведется опрос флага окончания преобразования АЦП, расположенного в регистре ADCSRA:

```
main:
    in r16,ADCSRA
    SBRC r16,4
    rcall ADC ready
```

rjmp main

Сначала считывание значение регистра ADCSRA в POH r16 (in r16, ADCSRA). После этого опрашивается 4-й бит этого регистра, соответствующий флагу ADIF (SBRC r16, 4). Если бит чист, то пропускается следующая за директивой SBRC инструкция. Иначе происходит переход на метку ADC ready (rcall ADC_ready).

5. По метке ADC_ready происходит обработка результата преобразования АЦП:

```
ADC_ready:
in r16,SREG
ldi r17,0x97
out ADCSRA,r17
in r17,ADCH
out PORTC,r17
ldi r17,0xC7
out ADCSRA,r17
out SREG,r16
ret
```

При переходе по метке ADC_ready сначала в POH r16 необходимо сохранить значение регистра SREG (in r16, SREG). После этого необходимо вручную сбросить флаг готовности преобразования АЦП записью в него логической «1» (ldi r17,0x97; out ADCSRA,r17). Необходимо запомнить, что все флаги в микроконтроллерах AVR сбрасываются записью в них логической «1». Далее в POH r17 считывание результат преобразования АЦП, хранящийся в ADCH (in r17, ADCH). Два младших бита, хранящиеся в ADCL, отбрасываются. Содержимое r17 передается в порт ввода/вывода С (out PORTC,r17), осуществляется перезапуск АЦП, восстановление регистра SREG (out SREG,r16) и выход из подпрограммы на адрес, записанный в стеке (ret).

Пример 2. Задача повторяет пример 1, но используется прерывание по готовности результата преобразования АЦП. Не использовать «левое» выравнивание результата.

;-----

```
;Входы:
     РА2 - аналоговый вход АЦП
;Выходы:
    РСО...РС7 - индикация кода результата преобразования.
.include"m8535def.inc" ;Подключение стандартной библиотеки
                         ;Начало сегмента кода
.cseq
.org$0
                        ;По адресу $0
                        ;осуществляется переход на reset
rjmp reset
                      ;При переходе по адресу $0E; осуществляется вызов функции обработки ; прерывания готовности АЦП.
.org$0E
rjmp ADC_ready
reset:
                        ; запрет всех прерываний.
  cli
  ldi r16,low(RAMEND) ;инициализируется стек
  ldi r17,high(RAMEND)
  out spl,r16
  out sph, r17
                        ;Производится инициализация портов
  ldi r16,0xFB
  out PORTA, r16 ;ввода/вывода
  clr r16
  out DDRA, r16
  out PORTC, r16
  ser r16
  out DDRC, r16
  ldi r16,0x42
                       ;Инициализация АЦП
  out ADMUX, r16
  ldi r16,0xCF
  out ADCSRA, r16
  sei
                         ;глобальное разрешение прерываний
main:
                         ;Главный цикл программы
  rjmp main
                        ;выполнен пустым
ADC_ready:
                        ;По метке ADC_ready:
  cli
                         ;Осуществляется глобальный запрет прерываний
  in r16,SREG
                        ; Сохраняется регистр SREG
  in r17,ADCL
                        ;Считываются 8 младших бит результата из
  ADCL
  in r18,ADCH
                        ;и 2 старших бита из ADCH
  lsr r17
                         ; два младших бита результата отбрасываются
  lsr r17
  clr r19
met1:
  lsl r18
                         ;Два старших бита результата в РОН r18
                         ; смещаются на 6 позиций влево.
  inc r19
  cpi r19,0x06
  brne met1
  or r17, r18
                        ;Происходит логическое сложение r17 и r18
  out PORTC, r17
                         ; Результат выводится на PORTC.
  ldi r17,0xCF
  out ADCSRA,r17
                        ;Происходит перезапуск АЦП
  out SREG, r16
                         ; Восстанавливается регистр SREG
                         ;Глобальное разрешение прерываний
  sei
                       ;Выход из подпрограммы обработки прерывания
  reti
```

Рассмотрим программу более подробно, показав отличия от программы, рассмотренной в примере 1.

1. В начале программы, помимо подключения библиотеки контроллера Atmega 8535 указываются адреса прерываний: reset — нулевое прерывание по адресу \$0, прерывание готовности результата преобразования АЦП по адресу \$0Е:

```
.include"m8535def.inc"
.cseg
.org$0
rjmp reset
.org$0E
rjmp ADC_ready
```

При попадании на эти векторы происходит переход на соответствующие метки reset и ADC ready.

2. Порты ввода/вывода и указатель стека инициализируются так же, как и в примере 1. Однако инициализация АЦП производится по-другому:

```
reset:
  cli
  ldi r16,low(RAMEND)
  ldi r17,high(RAMEND)
  out spl,r16
  out sph, r17
  ldi r16,0xFB
  out PORTA, r16
  clr r16
  out DDRA, r16
  out PORTC, r16
  ser r16
  out DDRC, r16
  ldi r16,0x42
  out ADMUX, r16
  ldi r16,0xCF
  out ADCSRA, r16
  sei
```

В регистре управления мультиплексором ADMUX убирается бит «левого» выравнивания результата. Это не связано с использованием прерывания по готовности АЦП, а сделано для демонстрации работы с двумя регистрами хранения результата АЦП: ADCH и ADCL. В регистре управления АЦП ADCSRA ставится маска ADIE на прерывание готовности АЦП для его активации. После всех установок необходимо осуществить глобальное разрешение прерываний (sei).

3. В отличие от примера 1, основной цикл программы выполнен пустым:

```
main:
    rjmp main
```

Это сделано по причине того, что при использовании нет необходимости занимать процессор постоянной проверкой флага прерывания готовности АЦП. При появлении флага прерывания основной цикл main будет автоматически прерван, адрес возврата сохранен в стеке, а программа перейдет по метке ADC_ready, указанной в векторе \$0E.

4. При переходе по метке ADC_ready осуществляется обработка прерывания по готовности АЦП:

```
ADC_ready:
     cli
     in r16, SREG
     in r17,ADCL
     in r18, ADCH
     lsr r17
     lsr r17
     clr r19
met1:
     lsl r18
     inc r19
     cpi r19,0x06
     brne met1
     or r17,r18
     out PORTC, r17
     ldi r17,0xCF
     out ADCSRA, r17
     out SREG, r16
     sei
     reti
```

При входе в подпрограмму сначала производится глобальный запрет всех прерываний (cli). При использовании одного прерывания этого можно не делать, однако правильно при входе в любую подпрограмму обработки прерываний остальные – запрещать.

После этого производится сохранение регистра SREG в POH r16. Обнуление флага прерывания не производится, так как при использовании прерывания это делается автоматически.

Далее результат преобразования считывается из регистров ADCH (старший) и ADCL (младший). Поскольку результат преобразования $AU\Pi - 10$ -разрядное число, в регистре ADCH (r18) будут использованы два младших бита: 0000 00XX, а в регистре ADCL (r17) – все биты: XXXX XXXX.

Для использования восьми старших битов результата необходимо сместить с потерей 0 и 1 битов регистр r17, приведя его к виду: 00XX XXXX (1sr r17; 1sr r17), сместить два младших бита регистра r18 на 6 позиций влево, приведя его к виду: XX00 0000:

```
met1:
    lsl r18
    inc r19
    cpi r19,0x06
    brne met1
```

После этого регистры r17 и r18 складываются (or r17,r18), а результат выводится на порт С. Далее АЦП перезапускается, регистр SREG восстанавливается (out SREG,r16), производится глобальное разрешение всех прерываний (sei), а потом — выход из подпрограммы обработки прерывания (reti).

Задание на выполнение

- **1.** Напишите программу применения АЦП, чтобы сигнал с канала ADC0 АЦП (10 разрядный код) полностью выводился в два порта: порт D младшие 8 разрядов кода, порт С 2 старших разряда.
- **2.** Измените программу таким образом, чтобы при левом выравнивании результата в регистре данных в порта D выводился:
 - 8 разрядный код;
 - 6 разрядный код;
 - 4 разрядный код;
 - 2 разрядный код.
- **3.** Напишите программу вычисления разности по двум каналам ADC0 и ADC1 и вывода 10-разрядного сигнала в дополнительном коде.
- **4.** Составьте программу, которая при входном аналоговом напряжении от 0 до $U_{O\Pi}/4$ выдает на семисегментный индикатор цифру «0», в диапазоне $U_{O\Pi}/4$ $< U_{BX} \le U_{O\Pi}/2 -$ цифру «1», и далее аналогично «2» и «3».
- **5.** Напишите программу плавного управления скоростью вращения двигателя М: используйте АЦП для ввода аналогового сигнала с потенциометра и таймер Т1 для вывода сигнала в виде ШИМ.
- **6.** Напишите программу «Вольтметр» для динамической индикации входного напряжения на семисегментных индикаторах. В целях упрощения при обработке сигнала используются только 8 двоичных разрядов. Вывод выполняется:
 - в шестнадцатеричном коде (00...FF);
 - в десятичном коде (000...255);
 - в виде напряжения (десятичный код с фиксированной запятой 0,00...5,00).

Работа № 10. Динамическая индикация символов

Цель работы

Освоить теоретический и практический материал по реализации динамической индикации с использованием микроконтроллера Atmega 8535. Применить приобретенные навыки при написании программы.

Программа работы

- 1. Изучить необходимый теоретический материал о принципах индикации символов на светодиодном семисегментном индикаторе.
 - 2. Разобраться в программах, представленных в лабораторной работе.
 - 3. Написать и отладить собственную программу динамической индикации.

Пояснения к работе

В настоящее время подавляющее число промышленных приборов оснащаются цифровыми индикаторами для отображения различных величин. В данной работе рассматриваются методы работы с семисегментными индикаторами и рассматриваются примеры программ.

Простейший семисегментный индикатор (рис. 1) представляет набор отдельных сегментов (светодиодов), при зажигании которых в определенной последовательности можно получить набор цифр и определенных символов.

Каждый сегмент индикатора имеет унифицированное буквенное обозначение в соответствии с латинским алфавитом. Верхний горизонтальный сегмент имеет обозначение «А», все последующие сегменты по часовой стрелке имеют обозначения «В», «С», «D», «Е», «F», «G», «Н» (рис. 1).

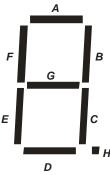


Рис. 1. Внешний вид и структура семисегментного индикатора

Для того, чтобы зажечь сегмент индикатора, необходимо подать напряжение на соответствующий светодиод А ... Н. Семисегментные индикаторы выпускаются двух типов – с общим анодом (рис. 2, а) и с общим катодом (рис. 2, б). Это делается для упрощения работы с индикатором и уменьшения количества выводов его микросхемы. Действительно, при использовании схемы с общим анодом аноды всех светодиодов объединяются, на них подается положительное напряжение. Для того, чтобы зажечь, например, сегмент «С», необходимо катод

соответствующего светодиода через токоограничивающий резистор присоединить к общему проводу.

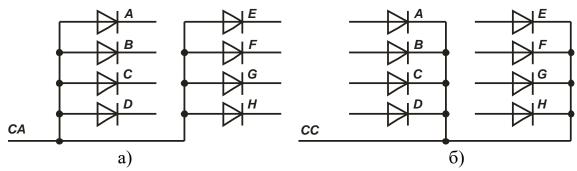


Рис. 2. Семисегментные индикаторы с общим анодом и общим катодом

При использовании индикаторов с общим катодом на него подключается шина с нулевым потенциалом, а на аноды светодиодов через токоограничивающие элементы подключается напряжение питания.

Таким образом, для того, чтобы зажечь, например, цифру 3, необходимо осуществить подачу напряжения на светодиоды A, B, C, D, G.

На практике для упрощения работы с индикаторами применяют схемы промежуточного усиления, предназначенные для усиления сигналов управления индикаторами и удобного управления их сегментами. Пример такой схемы приведен на рис. 3.

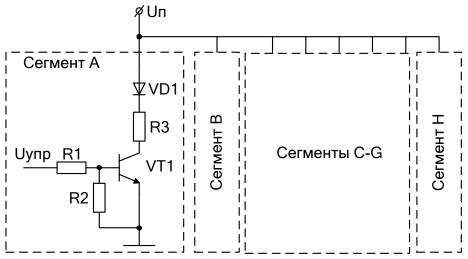


Рис. 3. Схема для управления индикатором

На общие аноды сегментов подается напряжение электропитания U_{Π} . Катоды сегментов через токоограничивающий резистор и транзистор подключаются к общей шине. Очевидно, что для зажигания сегмента необходимо включить транзистор (для сегмента A – транзистор VT1).

Включение транзистора VT1 осуществляется подачей на его базу тока управления, который появляется при подаче напряжения управления $U_{y \Pi P}$ на токоограничивающий резистор R1. Таким образом, при подаче от микроконтроллера сигнала логической «1» транзистор VT1 открывается и светодиод VD1 начинает светиться. Применение рассмотренной схемы позволяет включать сегменты сигналами логической «1», а не логического «0».

Пример 1. Написать программу, осуществляющую вывод на индикатор числа от 0 до F в шестнадцатеричном коде в соответствии с комбинацией сигналов на входе порта ввода/вывода A.

```
//----
;Программа вывода чисел 0... F на один разряд семисегментного индикатора
;Входы:
     РАЗ...РАО - задание кода числа
; Выходы:
     PD0 - управление подачей напряжения на индикатор
     РС7...РС0 - управление сегментами индикатора
.include"m8535def.inc" ;Подключение библиотеки Atmega8535
                            ;Начало сегмента кода.
.cseq
.org$0
                            ;По адресу 0
                            ;во Flash
reset:
                            ;По метке reset осуществляется:
      ldi r16,low(RAMEND);Инициализация стека. Вершина стека - в
     ldi r17, high(RAMEND); конце памяти данных
     out spl,r16
     out sph,r17
     clr r16
                           ;Инициализация портов ввода/вывода
                          ;Порт С - на вывод
;Порт D - на вывод
     out PORTC,r16
     out PORTD, r16
     ser r16
     out DDRC, r16
     out DDRD, r16
     ldi r16,0x0F
     out PORTA, r16 ;младшие 4 бита порта А - на ввод
     clr r16
     out DDRA, r16
                      ;Установка младшего бита порта D с целью
; подачи напряжения на общие аноды
     ldi r16,0x01
     out PORTD, r16
     индикатора
     in r16,PINA ;Происходит считывание дапила.
andi r16,0x0F ;и выделение бит PA3...PA0.
mov r30,r16 ;формирование адреса flash исходя из
ldi r31,0x02 ;считанных данных
lpm r16,Z ;извлечение в r16 данных из flash
out PORTC,r16 ;и вывод их на порт С (катоды индикатора).
rimp main ;переход на main и зацикливание программы
main:
                            ;По адресу 100
.org$100
.db 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07; таблица
.db 0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71; кодов символов
//----
```

Рассмотрим программу более подробно.

1. Сначала производится подключение библиотеки используемого контроллера Atmega 8535. После этого объявляется адрес начала сегмента кода.

2. По метке reset сначала происходит инициализация стека, затем – инициализация периферийных устройств микроконтроллера. В данном случае из периферийных устройств используются только порты ввода/вывода.

```
reset:
```

```
ldi r16,low(RAMEND)
ldi r17,high(RAMEND)
out spl,r16
out sph, r17
clr r16
out PORTC, r16
out PORTD, r16
ser r16
out DDRC, r16
out DDRD, r16
ldi r16,0x0F
out PORTA, r16
clr r16
out DDRA, r16
ldi r16,0x01
out PORTD, r16
```

В регистр указателя стека записывается адрес вершины стека, который (ldi r16, low(RAMEND); соответствует концу памяти данных ldi r17,high(RAMEND); out spl,r16; out sph,r17). Это необходимо для правильной работы программы при использовании подпрограмм и переходов. Порт С в программе будет подключен к катодам индикатора, поэтому он инициализаруется на вывод, младший бит порта D по заданию управляет подачей обшие напряжения питания на аноды индикатора, поэтому порт PA3...PA0 инициализируется вывод, биты порта ввода/вывода на инициализируются на ввод информации.

3. В основном цикле программы сначала происходит опрос порта ввода/вывода А:

```
main:
in r16,PINA
andi r16,0x0F
```

Производится опрос всего порта (in r16, PINA), после чего путем побитового умножения результата на число 0xFF (andi r16, 0x0F) происходит выделение младших значащих бит порта A.

4. По результату, считанному с порта А, производится формирование адреса во Flash-памяти, по которому хранится соответствующий символ. Поскольку во Flash память данные хранятся словами (2 байта), то для доступа к отдельному байту указывается двойной адрес. Поскольку адрес начала массива данных 0х100 (адрес в словах), то адрес первого байта – 0х200 (в байтах).

Для чтения данных из Flash в Z-регистре (r31:r30) указывается адрес памяти, а затем командой lpm происходит считывание данных:

```
ldi r31,0x02
lpm r16,Z
```

5. После считывание данных из Flash они выводятся на порт C, соединенный с индикатором:

```
out PORTC,r16
rjmp main
```

Далее программа зацикливается (rjmp main) для постоянного опроса порта ввода/вывода A.

6. По адресу Flash-памяти записывается таблица кодов символов:

```
.org$100 ;По адресу 100
.db 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07 ; таблица
.db 0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71 ; кодов символов
```

Таблица кодов символов включает 16 кодовых комбинаций, каждая из которых соотвествует выводимому на индикатор символу в шестнадцатеричном коде. Таблица цифр от 0 до F приведена в табл. 1.

$T \subset 1 \subset 1$	ры и его двоичного и шестнадцатеричного ко	
Таби Т Соотретствие нис	ΜΕΙ ΙΙ ΑΓΟ ΠΡΟΙΙΙΙΜΟΓΟ ΙΙ ΙΠΑΡΤΗΩΠΠΩΤΑΝΙΙΙΜΟΓΟ Μ	$\Pi \cap D$
Taon. I. Coolbelelbne hnu	ион и сто двоичного и шестнадцатеричного к	лдов
7		r

Цифра	Двоичный код	Шестнадцатеричный код
0	0b00111111	0x3F
1	0b00000110	0x06
2	0b01011011	0x5B
3	0b01001111	0x4F
4	0b01100110	0x66
5	0b01101101	0x6D
6	0b01111101	0x7D
7	0b00000111	0x07
8	0b01111111	0x7F
9	0b01101111	0x6F
A	0x01110111	0x77
b	0b01111100	0x7C
С	0b00111001	0x39
d	0b01011110	0x5E
Е	0b01111001	0x79
F	0b01110001	0x71

Динамическая индикация символов

Пример 1 показывает, как осуществляется подача символов на один индикатор. Однако часто требуется осуществлять индикацию больших чисел.

Рассмотрим варианты индикации числа 1234 на четырех семисегментных индикаторах. В примере будет использован индикатор с общим анодом (рис. 2, а).

В простейшем случае к общим анодам разрядов индикатора необходимо подключить напряжение питания, а на выводы А...Н каждого разряда подать соответствующую кодовую комбинацию (рис. 4).

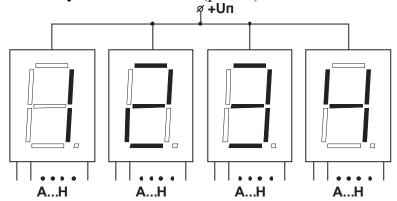


Рис. 4. Пример возможной реализации индикации символов на многоразрядном индикаторе

В случае подобной реализации многоразрядного индикатора возникает существенная проблема — при использовании четырех разрядов количество выводов микроконтроллера, используемых для индикации, составляет 32 шт, при этом всего рабочих выводов у микроконтроллера Atmega 8535 — 32, то есть ресурсы контроллера будут использованы полностью.

Для того, чтобы минимизировать ресурсоемкость процесса индикации, предлагается использовать метод динамической индикации. Этот метод основан на свойстве инерции человеческого зрения, при котором глаз не воспринимает разницу между быстро сменяющимися картинками, если они меняются с частотой, превышающей 25 Гц. Схема динамической индикации представлена на рис. 5.

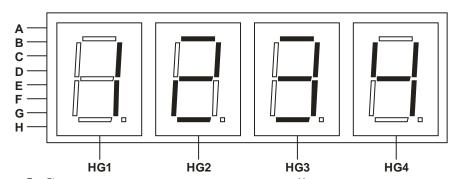


Рис. 5. Схема реализации динамической индикации символов

При динамической индикации соответствующие катоды всех индикаторов объединяются, то есть катоды сегмента А индикаторов HG1...HG4 объединяются в шину А, катоды сегмента В объединяются в шину В и т.д. Общие аноды индикаторов HG1...HG2, наоборот, разъединяются.

Если индикатор реализован подобным образом, то последовательность динамической индикации следующая:

– микроконтроллер выдает код числа 4 на катоды всех индикаторов, при этом напряжение питания подается только на разряд HG4. В результате цифра 4 светится только на индикаторе HG4;

- спустя время, не большее 1/100 секунды, на все сегменты выдается код числа 3, при этом напряжение питания подается только на разряд HG3. В результате цифра 3 светится только на индикаторе HG3;
- на следующем интервале времени на все индикаторы выдается код числа 2, при этом напряжение питания подается только на разряд HG2. В результате цифра 2 светится только на индикаторе HG2;
- в конце цикла на индикаторы подается код числа 1, а напряжение питания на индикатор HG1. В результате цифра 1 светится только на разряд HG1. Далее процесс повторяется.

Поскольку каждый разряд индикатора обновляется с частотой как минимум 25 Гц, человеческий глаз не замечает мерцания индикатора и процесс отображения числа 1234 кажется постоянным, хотя в один момент времени всегда светится только один разряд индикатора. С увеличением частоты обновления цифр качество индикации улучшается.

Пример 2. Написать программу индикации на четырехразрядном семисегментном индикаторе числа 1234 с использованием динамической индикации. Код числа выдается на порт С, управление разрядами осуществляется с порта D.

```
//----
; Программа демонстрации динамической индикации
; На индикатор выводится число 1234
; Выходы:
    PORTC7...0 - управление сегменты (PC0 - A, PC1 - B, ..., PC7 - H);
;
    PORTD3 - разряд HG4;
    PORTD2 - разряд HG3;
    PORTD1 - разряд HG2;
;
    PORTD0 - разряд HG1.
.include"m8535def.inc" ;Подключение библиотеки Atmega8535
.cseq
                       ;Начало сегмента кода.
.org$0
                       ;По адресу 0
reset:
                       ; По метке reset
     ldi r16,low(RAMEND); производится конфигурация указателя стека
     ldi r17, high(RAMEND)
    out spl,r16
    out sph,r17
    clr r16
                       ;Инициализируются порты ввода/вывода
    out PORTC, r16
    out PORTD, r16
    ser r16
    out DDRC, r16
                       ; PORTC - на вывод информации
    out DDRD,r16
                       ; PORTD - на вывод информации
    ldi r17,0x01
                       ;Включается младший разряд PORTD
    out PORTD,r17
                       ;Для подачи напряжения на HG1
main:
                       ;По метке main
    cpi r17,0x01
                       ;производится опрос, какой
                                                       разряд
                                                                HG
    работает
    breq HG1
                       ;если первый, то переход на метку HG1
```

```
; то переход на метку HG2
                   ;если третий,
    cpi r17,0x04
    breq HG3; то переход на метку HG3срі r17,0x08; если четвертый,breq HG4; то переход на метку HG4
HG1:
                      ;По метке HG1
    ldi r31,0x02
                       ; в Z-регистр задается адрес числа 4 в Flash
    ldi r30,0x04
                   ;и переход на метку met1
    rjmp met1
HG2:
                       ;По метке HG2
    ldi r31,0x02 ;в Z-регистр задается адрес числа 3 в Flash
    ldi r30,0x03
                   ;и переход на метку met1
    rjmp met1
HG3:
                       ;По метке HG3
    ldi r31,0x02 ;в Z-регистр задается адрес числа 2 в Flash
    ldi r30,0x02
                      ;и переход на метку met1
    rimp met1
HG4:
                      ;По метке HG4
    ldi r30,0x01 ;в Z-регистр задается адрес числа 1 в Flash rjmp met1 ;и переход на метку met1
    ;По метке met1 lpm r16,Z ;из Flash по указанному адресу считываются данные
met1:
    out PORTC, r16 ;и выводятся на PORTC
    clr r16 ;Осуществляется программная задержка времени
met2:
    inc r16
    cpi r16,0xFF
    brne met2
            ;Значение r17 сдвигается на один разряд влево.
    lsl r17
    срі r17,0x10 ;Если r17=0x10, то
    brne met3
    ldi r17,0x01 ;в r17 записывается 0x01
met3:
    clr r16
    out PORTC, r16 ; обнуляется PORTC
    out PORTD, r17 ; обнуляется PORTD
    rjmp main ;осуществляется переход на main
.org$100
              ;По адресу 100
.db 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07; массив данных
.db 0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71; кодов символов
//----
```

Рассмотрим программу более подробно.

1. Сначала производится подключение библиотеки используемого контроллера Atmega 8535. После этого объявляется адрес начала сегмента кода:

```
.include"m8535def.inc"
.cseg
.org$0
```

2. По метке reset осуществляется конфигурирование периферийных устройств контроллера и инициализация указателя стека:

```
reset:

ldi r16,low(RAMEND)

ldi r17,high(RAMEND)

out spl,r16

out sph,r17

clr r16

out PORTC,r16

out PORTD,r16

ser r16

out DDRC,r16

out DDRD,r16

ldi r17,0x01

out PORTD,r17
```

После инициализации устройств в регистр r17 записывается число 0x01 (ldi r17,0x01), после чего содержимое регистра выводится на порт управления разрядами индикатора (out PORTD, r17). Далее в r17 будет находиться значение, соотвествующее включенному состоянию PORTD.

3. По метке main сначала производится опрос включенного состояния PORTD путем опроса регистра r17:

main:

```
cpi r17,0x01
breq HG1
cpi r17,0x02
breq HG2
cpi r17,0x04
breq HG3
cpi r17,0x08
breq HG4
```

В зависимости от состояния r17 производится переход на метки HG1...HG4. Так, если в данный момент работает разряд HG1 (срі r17,0x01), то осуществляется переход на метку HG1 (breq HG1).

4. Далее, в зависимости от метки, производится запись в Z-регистр значения адреса Flash-памяти, по которому находится код нужного символа:

```
HG1:
     ldi r31,0x02
     ldi r30,0x04
     rjmp met1
HG2:
     ldi r31,0x02
     ldi r30,0x03
     rjmp met1
HG3:
     ldi r31,0x02
     ldi r30,0x02
     rjmp met1
HG4:
     ldi r30,0x01
     rjmp met1
met1:
     lpm r16,Z
```

```
out PORTC, r16
```

После записи адреса символа осуществляется переход на метку met1, по которой происходит считывание данных из Flash-памяти в POH r16 (lpm r16, Z) и вывод их на PORTC (out PORTC, r16).

5. В момент передачи данных на PORTC на одном из разрядов индикатора зажигается нужный символ, после чего необходимо сделать небольшую задержку времени:

```
clr r16
met2:
   inc r16
   cpi r16,0xFF
   brne met2
```

Для реализации задержки сначала содержимое POH r16 обнуляется (clr r16), после чего происходит его инкремент (inc r16) с последующим сравнением с уставкой (cpi r16,0xff). При значении r16, меньшем уставки, происходит возврат на метку met2 (brne met2). При достижении уставки программа следует дальше.

6. По окончании выдержки времени необходимо выключить индикатор и переключиться на индикацию другого разряда:

```
lsl r17
  cpi r17,0x10
  brne met3
  ldi r17,0x01
met3:
  clr r16
  out PORTC,r16
  out PORTD,r17
  rjmp main
```

С этой целью содержимое r17 последовательно сдвигается на одни разряд влево (lsl r17), после чего производится выдача его содержимого на PORTD (out PORTD, r17). Однако при достижении r17 значения 0x10 (cpi r17,0x10) в него необходимо записать значение 0x01 (ldi r17,0x01) для того, чтобы разряды PD0...PD3 включались циклично, а не происходило включение разрядов PD4...PD7 порта D. Во-избежание ложного отображения информации перед сменой включенного разряда индикатора происходит выключение сегментов индикатора (clr r16; out PORTC, r16). После этого программа зацикливается (rjmp main).

7. Адрес Flash-памяти, по которому записывается таблица кодов символов:

```
.org$100
.db 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07
.db 0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71
```

Пример 3. Динамическая индикация произвольного числа. Два предыдущих примера динамической индикации выполняют вывод на семисегментные индикаторы заведомо известного числа. А как составить программу для вывода произвольного десятичного числа?

Разработаем программу вывода на динамическую индикацию десятичного числа, эквивалентного 8 битам двоичного числа.

Пусть входного двоичное число подается на биты PA7...PA0, тогда диапазон изменения числа X на входе будет равен $X=00000000_2$ 111111111_2 . Такое двоичное число эквивалентно десятичному числу, изменяющемуся в диапазоне X=000...255. Таким образом, для вывода на индикацию потребуется три десятичных разряда, т.е. 3 семисегментных индикатора, работа которых должна быть реализована в форме динамической индикации: X2:X1:X0, где X2- цифра сотен, X1- цифра десятков, X0- цифра единиц.

Для реализации динамической индикации трехразрядного десятичного числа необходимо разбить выполнение программы на 3 такта (продолжительность всех тактов должна быть одинакова и задаваться либо аппаратной задержкой времени на таймерах, либо программной задержкой времени), например, так:

- первый такт:
 - ввод двоичного числа;
 - расчет отдельных цифр числа (разделение исходного числа на разряды) отдельная подпрограмма *digit*;
 - вывод на индикаторы цифры единиц;
- второй такт:
 - вывод на индикаторы цифры десятков;
- третий такт:
 - вывод на индикаторы цифры сотен.

Задачу деления трехразрядного десятичного числа на отдельные составляющие – разряды единиц, десятков и сотен – выполним с помощью подпрограммы.

На языках высокого уровня, где существуют операции деление и деление с остатком, вычисление цифр единиц, десятков и сотен выполняется достаточно просто, например, цифру единиц X0 целого числа X на языке Си можно вычислить с помощью формулы:

$$X0=X\%10$$
,

а цифру десятков X1 таким образом:

$$X1 = (X/10)\%10.$$

К сожалению, на Ассемблере операция деления выполняется очень тяжело – имеет большое количество инструкций и существенно увеличивает время исполнения программы.

Поэтому используем другой алгоритм вычисления десятичных цифр:

- вначале рассчитаем цифру сотен, для этого обнуляем цифру сотен X2=0, далее из исходного числа X последовательно вычитаем число 100 до тех пор пока число не станем меньше 100. На каждом этапе вычитания добавляем 1 в переменную X2 и в конце этого этапа переменная X2 будет содержать цифру сотен исходного числа;
 - на втором этапе аналогичным образом вычисляем цифру десятков X1;
 - оставшееся значения переменной X даст нам значение цифры единиц X0.

Примечания: для вывода числа в другой системе счисления, отличной от 10, необходимо в формулах подставлять соответствующее значение основания, например, для восьмеричной системы счисления для расчета десятков числа необходимо вычитать число 8, для расчета цифры сотен числа — вычитать число 8^2 =64, цифры тысяч — вычитать число 8^3 =512 и т.д.

Указанный алгоритм деления числа на отдельные десятичный цифры представлен в подпрограмме *digit*.

```
;-----
; подпрограммы вычисления десятичных цифр
; для трехразрядного десятичного числа
.def D10 R21 ; имя регистра цифры десятков .def D1 R20 ; имя регистра цифры единиц
              ; начало подпрограммы расчета цифр
digit:
     in r16,PINA ; ввод 8-ми битного двоичного кода
     clr D100 ; очистка регистра цифр сотен clr D10 ; очистка регистра цифр десятков clr D1 ; очистка регистра цифр единиц ; цикл расчета цифры сотен
sotni:
     cpi r16,100
     brlo desj
     subi r16,100
     inc D100
     rjmp sotni
desj:
                    ; цикл расчета цифры десятков
     cpi r16,10
     brlo edin
     subi r16,10
     inc D10
     rjmp desj
edin:
                   ; цикл расчета цифры единиц
     mov D1,r16
     ret
```

Задание на выполнение

1. Согласно своим персональным данным составить программу перевода двоичного числа в эквивалентное число другой системы счисления с выводом полученного числа на семисегментные индикаторы, т.е. вводится N-разрядное двоичное число, на индикаторы методом динамической индикации с аппаратной или программной задержкой времени, выводится эквивалент в системе счисления с основанием М. Данные (коды цифр) должны быть записаны и считываться из FLASH памяти.

Выбор исходных данных для составления индивидуального задания выполняется по таблицам:

а) Количество разрядов входного двоичного числа N и порт ввода числа определяются датой рождения по таблице:

Пото рожиния	Количество разрядов	Порт ввода
Дата рождения	двоичного числа	двоичного числа
1, 5, 9, 13, 17, 21, 25, 29	5	В

2, 6, 10, 14, 18, 22, 26, 30	6	С
3, 7, 11, 15, 19, 23, 27, 31	7	D
4, 8, 12, 16, 20, 24, 28	8	A

б) Основание системы счисления М определяется первой буквой фамилии по таблице:

•	
Первая буква	Основание системы
фамилии	счисления М
А, Л, Х	4
Б, М, Ц	5
В, Н, Ч	6
Г, О, Ш	7
Д, П, Щ	8

Первая буква	Основание системы
фамилии	счисления М
Е, Р, Э	9
Ж, С, Ю	10
3, Т, Я	12
И, У	14
К, Ф	16

в) Время включения одного индикатора определяется месяцем рождения:

	, , , , , , , , , , , , , , , , , , , ,
Месяц	Время задержки
рождения	времени Т, мс
1	0,1
2	0,5
3	1
4	2
5	5
6	10

Месяц	Время задержки
рождения	времени Т, мс
7	8
8	4
9	1,6
10	0,8
11	0,4
12	0,2

г) Тип используемого таймера и его прерывание при реализации задержки времени определяется первой буквой имени по таблице:

Первая буква имени	Тип таймера и его прерывания
А, И, С, Щ	Т0, переполнение
Б, К, Т, Э	Т1, переполнение
В, Л, У, Ю	Т2, переполнение
$\Gamma, M, \Phi, \mathfrak{A}$	Т0, совпадение
Д, Н, Х	Т1, совпадение А
Е, О, Ц	Т1, совпадение В
Ж, П, Ч	Т2, совпадение
3, Р, Ш	Программная задержка

В отчете привести:

- свои персональные данные, выбор параметров при составлении задания;
- функциональную схему работы устройства;
- расчет времени задержки и настройку регистров таймеров (если они есть);
- расчет кодов цифр;
- листинг программы с комментариями;
- алгоритм выполнения программы;
- реальные значения задержек времени, полученные в программе AVR-Studio.

2. Составить программу реализации динамической индикации на таймерах T0...T2. Данные предварительно записать в ОЗУ, выводить их на индикацию по адресу записи.

В отчете привести:

- исходное задание;
- функциональную схему;
- расчет настройки таймеров;
- расчет кодов данных;
- листинг программы;
- дизассемблированную программу;
- алгоритм;
- таблицу значений стека во время исполнения программы.

Варианты индивидуальных заданий

$N_{\underline{0}}$	Частота	Таймер	Биты PINA0 и PINA1					
вар	динамической	_	00	01	10	11		
	индикации, Гц							
1	1000	T0	Дата. День Рожден	ГодРождения	_	_		
			RИ					
2	. 200	T1	Имя	ГодРождения	_	_		
3	500	T2	«Add»	«Ldi»	«Clr»	«cpi»		
4	4000	T0	НомерГруппы	ГодПоступления	_	_		
5	400	T1	«Пуск»	«Стоп»	_	_		
6	3000	T2	Век	Год(2посл.Цифры)	_	_		
7	250	Т0	ДатаРождения	ДеньРождения	ГодРождения			
8	5000	T1	12	12 в 2 системе сч.	12 в 16 системе сч.	12 в 8 системе		
						сч.		
9	900	T2	«Abc»	«BCd»	_	_		
10	300	T0	Кол-во студ. в	НомерГруппы	Год поступления	Год окончания		
			группе					
11	600	T1	«Ab»	«bc»	«cd»	«dE»		
12	450	T2	123	456	789	000		
13	1500	T0	Имя1	Имя2	_	_		
14	150	T1	ДеньРождения	МесяцРождения	ГодРождения			
15	330	T2	1	12	123	1234		
16	10000	Т0	«in»	«out»	«call»			
17	333	T1	Дата рождения	Месяц рождения	Год рождения	«»		
18	. 700	T2	Дата.ДеньРожден	ГодРождения	_	_		
19	3500	Т0	ия Год рождения	(772.71)				
20	1200	T1	1 од рождения 15	«год» 15 в 2-ой системе		 15 в 8-ой		
20	1200	11	13	счисл.	счисл.	системе счисл.		
21	4200	T2	jan	feb		Jun		
22	560	T0	74	Члб	apr 66	Свд		
23	780	T1	руб	euro	dol			
24	2200	T2	cos	sin	Ln	Lg		
25	350	T0	32	64	128	256		
26	125	T1	День рождения	Месяц рождения	Год рождения	Год		
20	123	11	день рождения	месяц рождения	1 од рождения	поступления		
27	220	T2	10 в 2-ой системе	10 в 3-ой системе	10 в 4-ой системе	10 в 8-ой		
	-		счисл.	счисл.	счисл.	системе счисл.		
28	490	Т0	31.28	31.30	31.30	31.31		
29	850	T1	2009	2010	2011	2012		
30	3300	T2	abc	def	ghi	_		

Примечание: если в ячейке таблицы изображен символ «—» это означает, что в данном случае на индикаторы ничего не выводится.

- 3. Выполните вывод двухбайтного двоичного числа в шестнадцатеричном формате на семи сегментных индикаторах.
- 4. В порт A задается в двоичном формате первая переменная, в порт D вторая переменная, на семисегментных индикаторах выводится результат:
 - суммирования двух чисел А+В в десятичном формате;
 - вычитания А-В в шестнадцатеричном формате;
 - умножения А*В в десятичном формате;
 - поразрядного логического умножения в шестнадцатеричном формате;
 - поразрядного логического сложения в восьмеричном формате.
- 5. Напишите программу «Секундомер» для вывода с интервалом 1 сек. на семисегментный индикатор чисел от 0 до 200. Паузу реализуйте:
 - программным путем;
 - на таймере T1 с использованием прерывания по переполнению;
 - на таймере T1 с использованием прерывания по совпадению A.

Контрольные вопросы

- 1. Для чего предназначен семисегментный индикатор?
- 2. Какие схемы подключения существуют для семисегментного индикатора?
- 3. Объясните термин «динамическая индикация».
- 4. При динамической индикации числа используется 6 семисегментных индикаторов. Как рассчитать минимальную частоту обновления индикаторов? Что будет происходить при малой частоте динамической индикации?
- 5. Поясните последовательность работы программы при выводе двухразрядного числа.
 - 6. Как работает программы при выводе произвольного числа?
- 7. Каким образом в программе на языке высокого уровня можно выделить отдельную цифру числа? На языке Ассемблера?

Работа № 11. Внешние прерывания

Цель работы

Освоить работу с системой внешних прерываний микроконтроллера ATmegaXX.

Программа работы

- 1. Изучить необходимый теоретический материал о принципах работы внешних прерываний микроконтроллера ATmegaXX.
 - 2. Разобраться в программе, представленной в лабораторной работе.
 - 3. Написать и отладить собственную программу по заданию преподавателя.

Пояснения к работе

1. При работе высокоскоростных цифровых устройств, синхронизации автономных систем с электрической сетью, подсчете длительности импульсов микроконтроллеру требуется контролировать с высокой точностью момент появления того или иного сигнала.

Производить контроль состояния цифровых входов можно, например, простой директивой in r16, PORTA, производя это в основном цикле программы:

Однако при использовании этого способа опроса состояния портов точность фиксации момента перехода вывода порта из одного состояния в другое будет зависеть от длины программы. Действительно, когда произойдет изменение битов порта А заранее неизвестно, самый худший вариант изменение произошло сразу после выполнения чтения регистра состояния PINA, и, следовательно, в программе это изменение будет выполнено с существенной задержкой — только после выполнения всех инструкций цикла main.

Для того, чтобы при изменении состояния цифровых входов ход выполнения программы происходил сразу же используются, так называемые, внешние прерывания. При возникновении внешнего прерывания исполнение основного цикла программы приостанавливается и осуществляется переход на обработку этого прерывания.

В микроконтроллере ATmegaXX предусмотрена система внешних прерываний, которые обозначаются как INT0, INT1, INT2. Соответственно с каждым прерыванием связан определенный вывод микросхемы: с прерыванием INT0 связан вывод PORTD2, с прерыванием INT1 – PORTD3, с прерыванием INT2 – PORTB2.

Каждому прерыванию соответствует свой адрес в таблице векторов контроллера:

- адрес вектора прерывания INT0 0x01;
- адрес вектора прерывания INT1 0x02;

– адрес вектора прерывания INT2 – 0x12.

В статическом режиме если состояние сигнала на входах внешних прерываний не меняется, то выполняется основной цикл программы. Когда происходит изменение сигнала внешнего прерывания, контроллер выполняет следующие действия:

- заканчивается выполнение текущей инструкции основного цикла;
- в стеке сохраняется адрес следующей инструкции основного цикла;
- система прерываний контроллера вызывает переход исполнения программы в строку вектора внешнего прерывания, которое произошло;
- по адресу, указанному в векторе прерываний, выполняется переход на подпрограмму-обработчик этого внешнего прерывания;
- после окончания обработки прерывания программа возвращается в основной цикл программы на инструкцию, адрес которой был запомнен в стеке.

Для инициализации внешних прерываний предназначены специальные регистры: общий регистр управления внешними прерываниями **GICR** (General Interrupt Control Register), регистр управления прерываниями INT0 и INT1 **MCUCR**, регистр управления прерыванием INT2 **MCUCSR** и регистр флагов прерываний **GIFR**.

2. Регистр **GICR**

Регистр разрешает работу с внешними прерываниями и содержит 5 разрядов, назначение которых определено (состав приведен в табл. 1).

Табл. 1. Регистр управления GICR

	1 .	L						
Бит	7	6	5	4	3	2	1	0
Название	INT1	INT0	INT2	_	_	_	IVSEL	IVCE

Биты 7...5: INT1, INT0, INT2. Эти биты отвечают за разрешение или запрещение работы внешних прерываний. Если соответствующий бит установлен в состояние логической «1», то прерывание, управляемое этим битом, активно. В этом случае режим работы внешних прерываний определятся установками в регистрах **MCUCR** и **MCUCSR**.

Биты 4...2. Эти биты в регистре **GICR** зарезервированы и не задействуются при программировании.

Биты 1,0: IVSEL, IVCE. Эти биты в микроконтроллере не предназначены для изменения пользователем и при программировании не изменяются.

3. Регистр МСИСК

Этот регистр управляет работой внешних прерываний INT0, INT1 и предназначен для определения логики срабатывания прерываний (табл. 2).

Табл. 2. Регистр управления **MCUCR**

	1 2							
Бит	7	6	5	4	3	2	1	0
Название	SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00

Биты 7...4: SM2, SE, SM1, SM0. Эти биты в микроконтроллере не предназначены для изменения пользователем и при программировании не изменяются.

Биты 3, 2: ISC11, ISC10. Эти биты определяют событие, при котором происходит срабатывание прерывания INT1 (табл. 3).

Табл. 3. Биты управления прерыванием INT1

	<i>J</i> .	1 1
ISC11	ISC10	Описание
0	0	Прерывание по низкому уровню сигнала на PORTD3
0	1	Прерывание при любом изменении PORTD3
1	0	Прерывание по спадающему фронту на PORTD3
1	1	Прерывание по нарастающему фронту на PORTD3

Биты 1, 0: ISC01, ISC00. Эти биты определяют событие, при котором происходит срабатывание прерывания INT0 (табл. 4).

Табл. 4. Биты управления прерыванием INT0

ISC01	ISC00	Описание
0	0	Прерывание по низкому уровню сигнала на PORTD3
0	1	Прерывание при любом изменении PORTD3
1	0	Прерывание по спадающему фронту на PORTD3
1	1	Прерывание по нарастающему фронту на PORTD3

4. Регистр **MCUCSR**

Регистр управления прерыванием INT2 MCUCSR предназначен для определения логики срабатывания прерывания INT2 (табл. 5).

Табл. 5. Регистр управления **MCUCSR**

Бит	7	6	5	4	3	2	1	0
Название	-	ISC2	ı	_	WDRF	BORF	EXTRF	PORF

Биты 7, 5, 4. Эти биты зарезервированы и для программирования не предназначены.

Биты 3, 2, 1, 0: WDRF, BORF, EXTRF, PORF. Эти биты в микроконтроллере не предназначены для изменения пользователем и при программировании не изменяются.

Бит 6: ISC2. Этот бит определяет логику срабатывания прерывания INT2. Если бит установлен в состояние логической «1», то прерывание срабатывает по спадающему фронту сигнала на входе, иначе — по нарастающему. При изменении состояния бита ISC2 возможно ложное срабатывание прерывания. Поэтому рекомендуется сначала остановить прерывание INT2 обнулением бита INT2 в регистре **GICR**, после этого изменить состояние бита ISC2, после чего очистить флаг прерывания INT2 в регистре **GIFR** и активировать прерывание установкой бита INT2 в регистре **GICR**.

5. Регистр флагов прерываний **GIFR**

Регистр **GIFR** содержит флаги прерываний при их срабатывании. Состав регистра приведен в табл. 6.

Табл. 6. Регистр управления **GIFR**

Бит	7	6	5	4	3	2	1	0
Название	INTF1	INTF0	INTF2	Ī	ı	Ī	Ī	Ī

Биты 7...5: INTF1, INTF0, INTF2. Эти биты содержат флаги соответствующих внешних прерываний. Если прерывание срабатывает и оно разрешено в регистре GICR, выставляется его флаг. При выходе из подпрограммы обработки прерывания по команде reti осуществляется аппаратный сброс флага прерывания. Если есть необходимость ручного сброса прерывания, необходимо в соответствующий бит регистра GIFR записать значение логической «1».

Биты 4...0. Эти биты зарезервированы и для программирования не предназначены.

6. Пример использования внешнего прерывания

Рассмотрим пример, в котором с помощью внешних прерываний реализуется задержка времени.

Пример. Написать программу, в которой, используя внешний источник 50 Гц и внешнее прерывание INT0, осуществляется изменение значения порта С с частотой 2 Гц. Вначале значение порта С инкрементируется от 0 до \$F, далее от \$F до 0 начинается декремент кода и затем процесс повторяется.

```
;------
;Использование внеших прерываний
;Входы:
   PD2 - подача прямоугольных импульсов с генератора 50Гц
; Выходы:
    РСО...РС7 - индикация кода на светодиодах
.include"m8535def.inc" ; подключение библиотеки Atmega8535
.cseq
                       ; начало сегмента кода
.org$0
                      ;по адресу 0
rjmp reset
                      ;происходит переход на метку reset
.org$1
                      ;по адресу 1
rjmp INTO_ready
                      ;происходит переход на метку INTO ready
reset:
                       ; По метке reset
                       ;происходит запрет всех прерываний
    cli
    ldi r16,low(RAMEND);Производится инициализация указателя стека
    ldi r17,high(RAMEND)
    out spl,r16
    out sph, r17
    ldi r16,0xFB
                       ;Инициализация портов ввода/вывода
    out PORTD, r16
    clr r16
    out DDRD, r16
    out PORTC, r16
    ser r16
    out DDRC, r16
    ldi r16,0x03
                       ;Инициализация регистра MCUCR
```

```
out MCUCR, r16
      ldi r16,0x40
                           ;Инициализация регистра GICR
      out GICR, r16
      clr r16
                              ;Очистка необходимых РОН
      clr r17
      clr r18
      sei
                               ; Разрешение всех прерываний
main:
      rjmp main
                               ;Бесконечный цикл
INT0_ready:
                              ;При появлении внешнего прерывания INTO
                               ;Осуществляется запрет всех прерываний
      cli
      inc r16
                              ;Происходит инкремент r16
      inc r16
cpi r16,$19
                               ;и его сравнение с уставкой 0x19 (25)
                              ;Если r16=0x19, то переход на метку m1
      breq m1
      rjmp m3
                              ;иначе переход на метку m3
m1:
                               ;По метке m1
                              ; РОН r16 очищается
      clr r16
      cpi r18,0x01
                               ;и производится проверка r18
      л. производится проверка r18
breq rev ; Если r18=0x01, то переход на метку rev
inc r17 ;иначе происходит инкремент r17
cpi r17,0x0F ;и его сравнение с уставкой 0x0F
brne m2 ;Если r17≠0x0F, то переход на метку m2
ldi r18,0x01 ;Иначе установка r18=0x01
rjmp m2 ;и положет с
      rjmp m2
                              ;и переход на m2
                              ;По метке rev
      rev:
      dec r17 ; РОН r17 декрементируется срі r17,0x00 ; и его значение сравнивается с уставкой brne m2 ; Если r17\neq0, то переход на метку m2 ldi r18,0x00 ; иначе обнуление r18
m2:
                               ;По метке m2
      out PORTC, r17 ;осуществляется вывод в порт C
m3:
                               ;По метке m3
```

Рассмотрим основные особенности программы.

1. Вначале программы указываются метки, на которые необходимо переходить программе при появлении прерываний и сбросе. Для этого указываются используемые вектора прерываний reset (адрес 0) и INTO (адрес 1) согласно технической документации на контроллер:

```
.org$0
rjmp reset
.org$1
rjmp INTO_ready
```

- **2.** Инициализация стека необходимо, так как в программе используется прерывание
- **3.** Бит PD2 порта D используется на ввод информации (внешне прерывание INT0) для ввода сигнала с генератора 50 Гц.

```
ldi r16,0xFB
out PORTD,r16
```

```
clr r16
out DDRD,r16
```

4. Далее производится инициализация внешних прерываний:

```
ldi r16,0x03
out MCUCR,r16
ldi r16,0x40
out GICR,r16
```

Этими инструкциями выбирается режим срабатывания прерывания INTO по нарастающему фронту сигнала и активируется прерывание INTO с помощью установки соотвествующего бита в регистре GICR.

- **5.** Обработчик внешнего прерывания. При появлении нарастающего фронта импульса на выводе PD2 микроконтроллера возникает внешнее прерывание, в результате чего происходит переход на вектор прерывания INT0, по которому осуществляется переход на метку INT0 ready. После входа в подпрограмму:
 - запрещается срабатывание других прерываний (cli);
- в регистре r16 производится подсчет количества сработавших прерываний (inc r16);
- когда это число достигает 25 (шестнадцатеричное \$19), что соответствует временной задержке 50 мс, осуществляется переход на метку m1 (breq m1).
 - в противном случае осуществляется переход по метке m3 (rjmp m3).

```
INTO_ready:
   cli
   inc r16
   cpi r16,$19
   breq m1
   rjmp m3
```

6. По метке m1 счетчик прерываний очищается, после чего программа определяет, какой процесс в данный момент идет — инкремент или декремент счетчика кода, выдаваемого на индикацию. Если в регистре r18 установлено число 0x01, то это значит, что происходит декремент кода, если r18=0, то происходит инкремент кода. При инкременте производится проверка достижения кодом заданной уставки. При достижении этой уставки направление счета изменяется на противоположное. Аналогичное действие производится при декременте и достижении кодом нулевого значения.

```
m1:
    clr r16
    cpi r18,0x01
    breq rev
    inc r17
    cpi r17,0x0F
    brne m2
    ldi r18,0x01
    rjmp m2
rev:
    dec r17
    cpi r17,0x00
    brne m2
    ldi r18,0x00
```

7. По метке m2 производится вывод значения регистра r17 в порт С и выход из подпрограммы обработки прерываний. Перед выходом из подпрограммы разрешается срабатывание всех остальных прерываний.

Задание на выполнение

- 1. Используя внешнее прерывание INT1 и таймер Т0, напишите программу расчета периода сети и вывода его в двоичном коде (в миллисекундах) в порт С. Примерный алгоритм вычисления может быть следующим. На вывод INT1 подается сигнал с генератора 50 Гц. При появлении нарастающего фронта этого сигнала программа начинает считать импульсы с таймера Т0, работающего с частотой 1 кГц (период прохождения импульсов 1 мс). Счет заканчивается при возникновении нового прерывания INT1, после чего результат выдается в порт С. Для того, чтобы информация на выходе не слишком часто менялась, желательно обновлять информацию не 50 раз за секунду, а несколько реже, например, 1 раз в секунду.
- **2.** Выполните аналогичную задачу с выводом информации на 7-сегментный индикатор, при этом используйте динамическую индикацию. Подумайте, как увеличить точность измерения периода.
- **3.** Напишите программу определения частоты сети с точностью не хуже 1 Гц. Результат выводить на 7-ми сегментный индикатор с шагом по времени 1 секунда. Время между сетевыми импульсами измерять с помощью таймера.

Контрольные вопросы

- 1. Поясните назначение внешних прерываний в микроконтроллере.
- 2. Сколько внешних прерываний имеет конртоллер ATmegaXX и как они обозначаются?
- 3. Какие регистры ввода/вывода управляют работой системы внешних прерываний?
- 4. На какой вход микроконтроллера подается сигнал для оценки прерывания INT0? На какой INT1? INT2?
 - 5. В чем особенность определения внешнего прерывания INT2?
- 6. Запишите значения битов регистров GICR, MCUCR и MCUCSR для использования:
 - а) прерывания INT0 по возрастающему фронту сигнала;
 - б) прерываний INT0 и INT1 по любому фронту сигналов;
 - в) прерывания INT2 по любому фронту сигналов.
- 7. В какой области программы прописываются адреса векторов внешних прерываний? Как определить эти адреса?
 - 8. Поясните, как работает программа в приведенном примере.

ЛИТЕРАТУРА

- 1. Белов А.В. Самоучитель разработчика устройств на микроконтроллерах AVR. СПб.: Наука и техника, 2008.– 544 с.
- 2. Бродин В. Б. Системы на микроконтроллерах и БИС программируемой логики / В. Б. Бродин, А. В. Калинин. М.: ЭКОМ, 2002.- (Современная микропроцессорная техника).-398 с.: ил. (Микроконтроллеры MCS-51 Микроконтроллеры ADUC812 Микроконтроллеры Atmel).
- 3. Баранов В. Н. Применение микроконтроллеров AVR: Схемы, алгоритмы, программы / В. Н. Баранов; Фирма "Atmel".-М.: Додэка: Додэка- XXI, 2004.-(Мировая электроника).- 287 с.: ил.
- 4. Евстифеев A.B. Микроконтроллеры AVR семейства Tiny и Mega фирмы Atmel. М.: Издательский дом «Додэка». 2004.
- 5. Мортон Дж. Микроконтроллеры AVR. Вводный курс. / Пер. с англ. М.: «Додэка-XXI», 2006.–272 с.
- 6. Предко М. Руководство по микроконтроллерам: В 2 т./ М. Предко; Пер. с англ. Под ред. И. Шагурина, С. Б. Лужанского. М.: Постмаркет, 2001-.- (Библиотека современной электроники). Т. 1, 2001.- 415 с.: ил.
- 7. Предко М. Руководство по микроконтроллерам: В 2 т. / М. Предко; Пер. с англ. под ред. И. И. Шагурина, С. Б. Лужанского.- М.: Постмаркет, 2001. (Библиотека современной электроники). Т. 2, 2001.- 487 с.: ил. (Микроконтроллеры PICMICRO, AVR и Basic Stamp).
- 8. Трамперт B. AVR-RISC микроконтроллеры. / Пер. с нем.–К.: «МК-Пресс», 2006.– 464 с.

ПРИЛОЖЕНИЕ 1. Расположение выводов микроконтроллера ATmega8535

	_			_	
(XCK/T0) PB0	\Box	1	40	\vdash	PA0 (ADC0)
(T1) PB1	\Box	2	39	\vdash	PA1 (ADC1)
(INT2/AIN0) PB2		3	38	\vdash	PA2 (ADC2)
(OC0/AIN1) PB3	\Box	4	37	\vdash	PA3 (ADC3)
(/SS) PB4		5	36	\vdash	PA4 (ADC4)
(MOSI) PB5	\Box	6	35	Ь	PA5 (ADC5)
(MISO) PB6		7	34	\vdash	PA6 (ADC6)
(SCK) PB7	\Box	8	33	Ь	PA7 (ADC7)
\\RESET		9	32	\vdash	AREF
VCC	\Box	10	31	\vdash	GND
GND		11	30	\vdash	AVCC
XTAL2		12	29	Ь	PC7 (TOSC2)
XTAL1		13	28	\vdash	PC6 (TOSC1)
(RXD) PD0		14	27	Ь	PC5 `
(TXD) PD1		15	26	\vdash	PC4
(INT0) PD2	\Box	16	25	\vdash	PC3
(INT1) PD3		17	24	\vdash	PC2
(OC1B) PD4	\Box	18	23	\vdash	PC1 (SDA)
(OC1A) PD5	\Box	19	22	\vdash	PC0 (SDL)
(ICP) PD6	\Box	20	21	\vdash	PD7 (OC2)
•	L			_	

Назначение выводов:

RESET – сброс микроконтроллера

VCC – напряжение питания

GND – общий провод

XTAL1, XTAL2 – подключение кварцевого резонатора

AVCC – аналоговое питание для АЦП

AREF – внешний источник опорного напряжения для АЦП

РАО...РА7 – Выводы порта А

РВ0...РВ7 – Выводы порта В

РС0...РС7 – Выводы порта С

PD0...PD7 – Выводы порта D

Альтернативные функции выводов:

XCK – внешний тактовый вход интерфейса USART

Т0, Т1 – входы таймеров Т0, Т1

OC0, OC1A, OC1B, OC2 – выходы таймеров T0, T1, T2

ІСР – вход захвата таймера Т1

INT0, INT1, INT2 – входы внешних прерываний

AIN0, AIN1 – входы аналогового компаратора

SS – сетевой режим по интерфейсу SPI

MOSI – выход интерфейса SPI

MISO – вход интерфейса SPI

SCK – тактовый вход интерфейса SPI

RXD, TXD – вход и выход USART

SDA, SDL — линии последовательной передачи данных и тактовых импульсов по шине ${\rm I}^2{\rm C}$

TOSC2, TOSC1 – выводы подключение часового резонатора 32768 Гц

ADC0...ADC7 – каналы АЦП

ПРИЛОЖЕНИЕ 2. Регистры ввода/вывода микроконтроллера АТтеда8535

Адрес	Обозна- чение	Наименование	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
\$3F (\$5F)	SREG	Регистр статуса	_	1	н	S	^	z	Z	c
			Общее разрешение прерывания	Хранение копируемого бита	Флаг половинного переноса	Флагзнака	Флаг переполнения дополнит. кода	Флаг отриц. значения	Флагнуля	Флагпереноса
\$3E (\$5E)	HdS	Указатель стека, ст.байт						SP10	SP9	SP8
\$3D (\$5D)	SPL	Указатель стека, мл.байт	SP7	9dS	SP5	SP4	SP3	SP2	SP1	SP0
\$3C (\$2C)	OCR0	Регистр сравнения Т0								
\$3B (\$5B)	GICR	Регистр	INT4	INT0	INT2				IVSEL	IVCE
		Разрешения внешних	Разрешение	Разрешение	Разрешение				Размещение	Разрешение
		прерываний	внешнего прерывания INT1	внешнего прерывания INTO	внешнего. прерывания INT2				таблицы преры- ваний: 0-начало	изменения положения таблицы
									Flash,1-загрузчик	прерываний
\$3A (\$5A)	GIFR	Регистр флагов	INTF1	INTF0	INTF2				-	
		внешних прерываний	Флаг внешнего прерыв. INT1	⊅лаг внешнего трерыв. INT0	Флаг внешнего прерыв : INT2					
\$39 (\$59)	TIMSK	Регистр маски	OCIE2	T0IE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0
		прерываний таймеров	Флагразрешения	Флагразрешения	Флагразрешения	Флагразрешения	Флагразрешения	Флагразрешения	Флагразрешения	Флагразрешения
			прерывания по совпадению T2	прерывания по переполнению T2	прерывания по захвату Т1	прерывания по совпадению Т1A	прерывания по совпадению Т1В	прерывания по переполнению Т1	прерывания по совпадению ТО	прерывания по переполнению ТО
\$38 (\$58)	TIFR	Регистр флагов	0CF2	1002	ICF1	OCF1A	0CF1B	1001	0CF0	1000
		прерываний таймеров	Флагпрерывания	Флаг прерыв. по	Флагпрерывания	Флаг прерыв. по	Флаг прерывания	Флаг прерыв. по	Флаг прерывания	Флаг прерыв. по
			по совпадению Т2	переполнению Т2	по захвату Т1	совпадению Т1А	по совпадению Т1В	переполнению Т1	по совпадению ТО	переполнению Т0
\$37 (\$57)	SPMCR	Регистр управления	SPMIE	RWWSB	1	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN
10141004	G 55 F	Hamylbro	1	4 J. 1	THEOTER	TOTOL	2000			
\$30 (\$20)	WCK	Регистр управления	IMIM	IWEA	WSIA	OISM	MMC	IWEN	-	IME
		интерфеисом ТVVI	Флаг прерывания	ьит подтверждения	ьит условия старта	БИТ УСЛОВИЯ ОСТАНОВКИ	Флаг коллизии записи	ьит разрешения		Разрешение прерывания
\$35 (\$55)	MCUCR	Регистр управления	SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00
		микр оконтроллера	Pexим SLEEP	Разрешение режима SLEEP	Режим SLEEP (SM2:SM1:SM1): 000- Idle, 001- уменьшения шума ADC, 010-	3M1:SM1): 000- 8 шума ADC, 010-	Условие генерации внешнего прерывания INT1: 00- по низкому	нешнего - по низкому	Условие генерации внешнего прерывания INTO: 00- по низкому	внешнего О- по низкому
					PowerDown, 011-PowerSave, 110- Standby, 111-Ext Standby	erSave, 110- idbv	уровню, 01- по любому фронту, 10- по отринательному фронту. 11- по	му фронту, 10- по нту: 11- по	уровню, 01- по любому фронту, 10- по отринательному фронту, 11- по	ому фронту, 10- по онту, 11- по
						ì	положительному фронту	HTY.	положительному фронту	утнос
\$34 (\$54)	MCUCSR	Регистр статуса и	ı	ISC2	1	ı		BORF		PORF
		управления микроконтроллера		Чувствительность прерывания INT2			Флаг сброса WatchDog	Флаг сброса Brown-out	Флаг внешнего сброса	Флаг сброса пита н ия
\$33 (\$53)	TCCR0	Регистр управления	F0C0	WGM00	COM01	COM00	WGM01	CS02	CS01	cs00
		таймера Т0	Принудительное изменение	Режим работы таймера ОАСМО1	Режим работы блока сравнения: 00- таймер откричен от ОСЛ 01- состояние	равнения: 00- СО 01-состовние	Режим работы таймера (WGM01	Управление тактовы таймер остановлен	Управление тактовым сигналом (делитель тактов): 000- таймер оттановлен 001-ык 010-ык 011-ык 64 100-	и ъ тактов): 000- и1-ски64 100-
			cocтoяния выхода	WGM00): 00-Normal, 01-dasoshii IIIM	меняется на гротивоположное, 10-вывод сбрасыв в 0-11-вывол сбрасыв в 1	оложное, 10- вывод и сбрасыв в 1	WGM00): 10-CTC, 11- Felctoria IIIIM	ck/256, 101-ck/1024, 110-selsog no orp 111-selson no nonoxymenestowy deoetry	4,110-вывод по отри кительному фоонту	ck/256, 101-ck/1024, 110-вырод поступельному фронту, 111-вывод по положительному фронту,
\$32 (\$52)	TCNTO	Счетный регистр Т0	\(\hat{\chi}\)						() de	
\$31 (\$51)	OSCCAL	Регистр калибровки сТК								
\$30 (\$20)	SHOR	Регистр специальных	ADTS2	ADTS1	ADTS0	ADHSM	ACME	PUD	PSR2	PSR10
		функций	Источник запуска АЦГ прерывание от компак 100- переполнение ТО [1] 111- захват 11	Источник запуска АЦТ: 000- непрерывное преобразования, 001 прерывание от компаратора, 010- INTO, 011 - совпадение Т0, 100- переполнение Т0, 101- совпадение Т1, 110- переполнение Т1, 111. захват Т1	Ме	Увеличение скорости преобразования А.П.	Доступ к мульти- ллексору АЦП при работе компаратора инверсный вход)	Рий-ир недоступен (подтягивающие резисторы не	Сброс предделителя таймера T2	Оброс предделителя таймеров ТО, Т1
								7		

421.441	TOTOTA	Dominate and a second	COMANA	00000	COMADA	COMMOD	LOCAR	LOCAD	MICHAE	18/08/40
(1+¢) 17¢	L C R I A	Femorip ynpablienna A	COMIN	COMITAG	COMID	COMIDO	FUCIA	rocib	WOM	WOMILO
		таимера гл	Режим работы блока сравнения А при	сравнения В при	Режим работы блока сравнения при	сравненияпри	Принудительное	Принудительное	Режим работы таймера (вместе с	лера (вместе с
			"Совпадении": 00-таймер отключен от вывола ОС1А - 01-состовние меняется	"Совпадении": 00-таймер отключен от вывода ОСТА - 01-состовние менеется на	"Совпадении": 00-таймер отключен от вывода ОСТВ - 01-состовние меняется	Имер отключен от стояние меняется	изменение	изменение состояния выхода	Dutawu WGM13 u WGM12 perucipa TCCR18 pexumal Normal CTC (Cfit	битами WGM13 и WGM12 регистра ТССВ18), режимы Normal CTC (оброс
			противоположное, 10- вывод сбрасыв. в	Э вывод сбрасыв. в	на противоположное, 10- вывод	10- вывод	OC1A (Normal и	OC1B (Normal и	при совпадении), б	при совпадении), быстрый и фазовый
421 441	1000E	c	0,11- BbIBOA CEPACEIB.B1	3.81	CDPSCEIB. B U, 11- BEIBOA CDPSCEIB. B 1	og copaceis, s 1	CTC)	CTC)	MMM 000,0	4
\$2E (\$4E)	CKIB	Регистр управления В	CNC1	ICES1	ı	WGMT3	WGM1Z	CS12	CS11	CS10
		таммера г.	оключение схамы подавление помех (4 выбория)	beloop uponta saxbata (0- no ometi decent 1- no		Режим расоты таммера (вместе с битами VVGM11 и VVGM10 регистра ТССВ1 & везимы Normal CTC (сблос	nepa (BMecre c VGM10 pervorpa ormal CTC (offinor	управление тактов таймер остановлен 404 ыкм 004-440-84	Yilpas Jehne Taki Osban chihajioni (jehni etb. Takios). Ood Tahnogo Cottahoshen, Odi-Cik, Odi-Cik, Odi-Cik, G4, 100-Cil 101-Cik, Odi-Cik, Odi-Cik, Odi-Cik, Odi-Cik, G4, 100-Cil	Viljastijanis i aktobom cinimatijan (jetim etis Taktob). Duo- tamingo ocranischen (john ck. prilo - ck.R.) pril cikik gl. 100-ck/256 101 cikik 1024 110 etisen no omalii dhoema 111 etisen no
			(+ ppinopky)	отриц. Фропту, 1-110 полож.)		при совпадении), РУМ (ШИМ)	ormal, crc (copoc AM (LIMM)	полож. фронту	ыв од 110 отрицадроп	y, iii-bbibugiib
\$2D (\$4D)	TCNT1H	Счетный регистр Т1				Старший байт	байт			
\$2C (\$4C)	TCNT1L	Счетный регистр Т1				Младший байт	й байт			
\$2B (\$4B)	OCR1AH	Регистр сравнения А Т1				Старший байт	i 6aŭt			
\$2A (\$4A)	OCR1AL	Регистр сравнения А Т1				Младший байт	й байт			
\$29 (\$49)	OCR1BH	Регистр сравнения В Т1				Старший байт	i 6aŭt			
\$28 (\$48)	OCR1BL	Регистр сравнения В Т1				Младший байт	i 6aŭr			
\$27 (\$47)	ICR1H	Регистр захвата Т1				Старший байт	í ðağı			
\$26 (\$46)	ICR4L	Регистр захвата Т1				Младший байт	и байт			
\$25 (\$AE)	TCCD2	Рогистр управления Т2	EOC?	WGM20	CMO3	COMO	W/GM24	(63)	LC3.1	0630
(0+4) 074	I C C II	гегистр управления т	LOCZ	WOIMED		COINTS	WOINT I	7552	1.32	1.000
			принудительное изменение состояния выхода	Режим расоты таймера (WGM21, WGM20): 00-Normal,	Режим расоты олока сравнения при "Совпадении": ОО-таймер отключен от вывода ОСО, О1-состояние меняется на	сравнения при ймер отключен от ожние менжется на	Pexidim pagorbi Taivimepa (WGM21, WGM20): 10-CTC,	Управление тактов таймер остановлен 101-сIk/128, 110-сIk	ynpas nietus Takrosbiki okintanoki (Jahurana Takros), uuu- Takkep ocraevosnet, 001-cik (2011-cik (32, 100-cik (3011)) 101-cik (128, 110-cik (25, 111-cik (1024))	Управление тактовым синталлом (целитель тактов), пои- таймер остановлен, 001-сік, 010-сік,8 011-сік/32, 100-сік/64, 100-кі/128 (110-сік/256, 111-сік/1024
			OC2 (Normal и СТС)	01-фазовый ШИМ	противоположное, 10- вывод сбрасыва- ется в 0, 11- вывод сбрасывается в 1	- вывод сбрасыва- расывается в 1	11- быстрый ШИМ			
\$24 (\$44)	TCNT2	Счетный регистр Т2								
\$23 (\$43)	0CR2	Регистр сравнения Т2								
\$22 (\$42)	ASSR	Регистр состояния	I	ı	ı	ı	AS2	TCN2UB	OCR2UB	TCR2UB
		асинхронного режима					Переключение	CoctogHMe	Coctoshive	Coctoshive Tocos
							режима расствто-	COHOBITEHMA TCNT2: 0- rotos k	OCR2: 0- rotos k	00H08Ления ГССК2. 0- готов к записи. 1-
							co kBapua	9E E	записи, 1- есть	есть значение
454 1044)	OUTON					MOTOR	10301710302	Madenie	значение	9000
\$21 (\$41)	WUICK	Регистр управления	1	ı	ı	WDIOE	WDE	WDPZ	WDF1	WUPU
		сторожевым таимером				газрешение изме- нения стороже- вого таймера	Сторожевои таммер включен	лоэффициент деле 010- 64К, 011-128К 2048К	Nooppinjulert genering peggenintens, oud-tok, out-sak, 010-64K, 011-128K, 100-256K, 101-512K, 110-1024K, 111- 2048K	, 110-1024K, 111-
\$20 (\$40)	UBRRH	Perистр скорости пере- дачи данных USART	URSEL	I	I	ı	UBRR11	UBRR10	UBRR9	UBRR8
	UCSRC	Регистр В состояния и	URSEL	UMSEL	UPM1	UPM0		UCSZ1	0CS20	UCP OL
		управления USART	Bыбор регистра: 0- UBRRH, 1- UCSRC	Режим работы: 0- асинхоонный: 1-	Контроли и формирование четности 00- выключен 10- гров врка на четность	зание четности оверка на четность	Кол-во стоп-битов: 0- 1 стоп-бит: 1- 2	Формат посылок (вместе с UCSZ2 nerwcroa UCSRB): 00- 5 paspanos, 01-5	ecteic UCSZ2 J- 5 paspagne, 01-6	Полярность тактового сигнала в
				синхронный	(even),11-проверка на нечетность (odd)	на нечетность (odd)	стоп-бита	зазр., 10-7 разрядов, 11-8 разрядов	в, 11-8 разрядов	синхронном режиме
\$1F (\$3F)	EEARH	Регистр адреса ЕЕР ВОМ	ı	ı	ı	ı	ı	ı	ı	EEAR8
\$1E (\$3E)	EEARL	Регистр адреса ЕЕР КОМ	EE AR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0
\$1D (\$3D)	EEDR	Регистр данных ЕЕР ROM								
\$1C (\$3C)	EECR	Регистр управления	ı	1	ı	ı	EERIE	EEMWE	EEWE	EERE
		EEPROM					Разрешение пре- рывания ЕЕРКОМ	Разрешение записи в ЕРROM	3anuch B EEPROM	Чтение из ЕЕРКОМ
\$1B (\$3B)	PORTA	Регистр данных порта А	PORTA7	PORTA6	PORTA5	PORT A4	PORTA3	PORT A2	PORT A 1	PORTA0
\$1A (\$3A)	DDRA	Регистр напрев. порта А	DD A 7	DD A6	DD A5	DDA4	DD A3	DD A2	DDA1	DD A 0
\$19 (\$39)	PINA	Выводы порта А	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0
\$18 (\$38)	PORTB	Регистр данных порта В	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0

DDRB PORTICE DDRB DDRB PORTICE PORTIC	ł									
PORRIC PORRICO PORTOR PORRICO PORTOR PORRICO PORTOR PORRICO PORTOR PORRICO PORTOR		Регистр направ, порта В	DDB7	9B00	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0
РОКТС РОКТС РОКТС5 РОКТС5 </th <th>_</th> <th>Выводы порта В</th> <th>PINB7</th> <th>PINB6</th> <th>PINB5</th> <th>PINB4</th> <th>PINB3</th> <th>PINB2</th> <th>PINB1</th> <th>PINB0</th>	_	Выводы порта В	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0
DDRC Регистр направ. порта С DDC7 DDC6 DDC5 PDRCD BERROQLE INOPTA C DRICDT PDRCD PDRCD DDRD BERROQLE INOPTA C DDD7 DDD6 DDD5 DDRD BERROQLE INOPTA D DDD7 DDD6 DDD5 DRD BERROQLE INOPTA D DDD7 DDD6 DDD5 SPCR PERICED COCTOSHING SPI SPI SPCR PROFE SPCR PERICED ADAREAU US ART PROFE SPCR SPCR UOSRA PERICED ADAREAU US ART PROFE SPCR PROFE UOSRA PERICED ADAREAU US ART PROFE PROFE PROFE UOSRA PERICED ADAREAU US ART PROFE PROFE PROFE ACSR PERICED ADAREAU ALUT ACD ACD ACD		Регистр данных порта С	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0
РИКС Выводы порта С Воровотор РИКС5 РИКС5 РОКТОБ PORTOБ DORDD PEHICEP AddHebix Topta D SPOR DODGT DDDG PORTOG PIND5 PIND Belegati nop ta D SPOR PEHICEP AddHebix SPI SPI - - SPOR Pertice D AddHebix SPI SPI WCOL - - SPCR Pertice D AddHebix SPI SPI WCOL - - 1 UCS RA Pertice D AddHebix USART Repailed to the special of th		Регистр направ, порта С	DDC7	9DQQ	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0
РОКТО РЕНИСТР ДАННЫХ ПОРТА РОКТОБ РОКТОБ РОКТОБ РОКТОБ РОКТОБ РОКТОБ DORDS PRINDS	t	Выводы порта С	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0
DDRD PERICED HARDAR ROPTS DDD7 DDD6 PIND5 SPSR PERICED LINDITS D SPIF WCOL - SPSR PERICED AGHNER SPI SPIF WCOL - SPSR PERICED AGHNER SPI SPIF DORD JOSRR PERICED AGHNER SPI SPIF DORD JUDS PERICED AGHNER SPI SPIF DORD JUDSR PERICED AGHNER IN SPI RAC DORD JUDSR PERICED AGHNER IN SPIR RXC INC JUDSR PERICED AGHNER IN SPIR RXC INC JUDSR PERICED AGHNER IN SPIR RXC INC JUDSR PERICED AGE CONTRIBATION SEED WENT OF THE PROPERTY OF THE		Регистр данных порта D	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0
PIND Bыводы порта Воно данных SPI SPIR WCOL - SPSR Регистр данных SPI SPIF WCOL - SPCR Регистр данных SPI SPIE WCOL - I UCSRA Регистр данных USART PRESPERENHIS IN TRACE DORD Данных I UCSRA PETICIP ДАННИЯ ИЗАКТ TXC UDRE Данных I UCSRA PETICIP ДАННИЯ ИЗАКТ PRESPERENHIS IN TRACE UDRE UDRE I UCSRA PETICIP COCTOMHIS IN TRACE TXCIE UDRE UDRE I UCSRA PETICIP COCTOMHIS IN TRACE TXCIE UDRE UDRE ACSR PETICIP COCTOMHIS IN TRACE TXCIE UDRE ACD ACSR PETICIP COCTOMHIS IN TRACE PRESPECATION TRACE UDRE ACD ACSR PETICIP COCTOMHIS IN TRACE ACD ACD ACD ACSR ACSR ACSR ACD ACD ACSR AUMUS ACD ACD ACD ADCSRA AUTICAL DANAMARIA AUTICAL AUTICAL AUTICAL AUTICAL AUTICAL AU	+	Регистр направ, порта D	DDD7	9000	0005	DDD4	DDD3	DDD2	DDD1	0DD0
SPOR Регистр данных SPI SPIF WCOL - SPCR Регистр данных USART Флаят прерывания от ВРI SPI DORD UDR PETRICTD Данных USART PRINCIP P PETRICTD DORD UDR PETRICTD Данных USART TXC UDRE UCSRB PETRICTD Данных USART TXC UDRE UCSRB PETRICTD A CCTORHINI II RXC TXC UCSRB PETRICTD A CCTORHINI II RXC TXC UCSRB PETRICTD A CCTORHINI II RXCIE TXC UCSRB PETRICTD A CCTORHINI II RXCIE TXC UCSRB PETRICTD A CCTORHINI II RXCIE TXCIE ACSR PETRICTD A CCTORHINI II RXCIE TXCIE ACSR PETRICTD A CCTORHINI II RXCIE TXCIE ACSR PETRICTD A COLOMHINI II ACS ACCIE ACSR PETRICTD A COLOMHINI II ACD ACCIE ACSRA PETRICTD A COLOMHINI II ACD ACCID ACSO PETRICTD A COLOMHINI II ACCID	\vdash	Выводы порта D	PIND7	90NId	PINDS	PIND4	PIND3	PIND2	PIND1	DIND0
SPCR Petricip Coctodnius SPI SPIF WCOL SPCR Petricip Danamenhius SPI SPIF SPIE SPE DORD SPCR Petricip A Coctodnius IN RXC British B Belgino-tenine ripepath B Petricip A Coctodnius IN RXC British B Belgino-tenine ripepath B B B B B B B B B B B B B B B B B B B	+	Регистр данных SPI								
SPCR Регистр управления SPI SPIE SPE DORD UCSRA Регистр управления SPI SPIE SPE DORD UUSRA Perистр Данных USARI RXC TXC UDRE UCSRB Perистр A сос гояния и RXC TXC UDRE UCSRB Perистр A сос гояния и RXC TXC UDRE ИСSRB Perистр A сос гояния и RXC TXC UDRE ИСSRB Perистр A сос гояния и RXC TXCIE UDRE ИСSRB Perистр C сос гояния и RXC TXCIE UDRE АСSR Perистр C сос гояния и RXC ACD ACD ACSR Perистр C сос гояния и C сос гояния TWA ADCH ADCH </th <th>t</th> <th>Регистр состояния SPI</th> <th>SPIF</th> <th>MCOL</th> <th>1</th> <th>ı</th> <th>ı</th> <th>ı</th> <th>ı</th> <th>SPI2X</th>	t	Регистр состояния SPI	SPIF	MCOL	1	ı	ı	ı	ı	SPI2X
SPCR Регистр управления SPI SPIE DORD и UDR Регистр данных USARI Регистр данных USARI Порядки передачни и USRA Регистр данных USARI Поля завершения ПХС UDRE и USRA Регистр данных USARI Поля завершения ПХС UDRE и USRA Регистр скорости пере- вачия данных USARI ПХС UDRE и USRB Регистр скорости пере- вачия данных USARI Веклонение преры- вачия данных USARI АСО и ИВRI Регистр состояния и гового компаратора АСО АСО и ИВРА Веклонение преры- вачия данных USARI Веклонение преры- вачия данных USARI АСО АСУ Веклонение Веклонение Веклонение Веклонение и управления анало- гового компаратора Компаратора Компаратора Веклонение АВСУ Веклонение Веклонение Веклонение Веклонение АВСУ Веклонение Веклонение Веклонение Веклонение АВСУ Веклонение Веклонение Веклонение Веклонение АВСУ В	+		Флаг прерывания от	Флагконфликта						Удвоение скорости
SPCR Регистр управления SPI SPIE DORD UDR Регистр данных USART Прерывания от передачи Провдок передачи 1 UDR Регистр Данных USART Прерывания прерывания проведа передачи Провдок передачи 1 UCSRB Регистр В состояния и приема Приема Провдок прередачи 1 UCSRB Регистр Скорости приема ТХСІЕ UDRIE 2 ОКВРА Регистр Скорости приема Выключение преры- вания приема Вания по заверше- нию прерадачи 3 ОКВРА Дачи данных USART Выключение преры- вания приема Вания по заверше- нию прерадачи 4 ОКВРА Дачи данных USART Выключение преры- вания преры- вания преры- вания проведачи Вания по заверше- нию прерадачи 4 ОКВРА Дачи данных USART АСВ АСВ АСО 4 ОКВРА Выключение преры- нию прерадачи Вания по заверше- нию прерадачи Вания по заверше- нию прерадачи 4 ОКВРА Ветистр данных АЦП Выключение преродачия Валия по завершение работы Подключение преродачия Валия по завершение преры- вания преры- прерысяти преры- вания 4 ОКВРА Регистр данных АЦП Вазрешение работы Подключение преры- преры- преры- преры- преры- преры-			SPI	записи						SPI
UCSRB Регистр Данных USART RXC TXC UDRE UCSRB Регистр А состояния и USART RXC TXC UDRE UCSRB Регистр В состояния и USART Принама передачи пере	\vdash	Регистр управления SPI	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1 SPR0	SPR0
UCSRA Регистр данных АЦП RXC TXC UDRE UCSRA Регистр данных АЦП ТХСТЕ UDRE POSTRA Управления USART Приема Приема UDRE UCSRB Регистр в состояния и какта приема ПОКТЕ UDRE UCSRB Регистр скорости пере- вания приема Приема Вения проведачи вения просметите преры вения просметия UBRRL Регистр скорости пере- дачи данных USART ACD ACBG ACO ACSR Регистр скорости пере- нию приема Вения данных USART Вения данных Просметия ACBG ACSR Регистр скорости пере- ний просредения ACBG ACD ACD ACSR Регистр скорости пере- ний просредения Benchoveние Benchoveние Benchoveние ADMUX Регистр скором АЦП Benchoveние (просредения) Benchovenue Benchovenue ADCSRA Регистр данных АЦП Bespewerhair AUCT ADCR ADATE ADCH Регистр данных АЦП Bespewerhair AUCT Bespewerhair AUCT Bespewerhair AUCT TWAR Регистр данных АЦП Per			Разрешение прерывания от SPI	Включение SPI	Порядок передачи данных	Bыбор режима: 0-Slave, 1-Master	Полярность тактово- (го сигнала: О-генер («+»,1- генер «-»	Фронт тактового сигнала: 0- перед- ний: SCK, 1-задний	Скорость передачи: Т 10- clk/64, 11- clk/128	00-21K4,701-31k716,77
UCSRA Регистр А состояния и разрешения ПХС UDRE и UCSRB Регистр В состояния и разрешения преры- преобразования (1- трений 2,568 с вышними конден-сатором АСО АСО АСО АСО Выкомоченный к АУСС, 11- вму- преобразования (1- трений 2,568 с вышними конден-сатором АОСВ		Регистр данных USART								
UCSRB Регистр В состояния и ВХСГЕ Флаг завершения передачи пер	\vdash	Регистр А состояния и	RXC	TXC	UDRE	H	DOR	FE	U2X	MPCM
UCSRB Регистр В состояния и управления USART Разрешение преры- Преры преры- Преры- Преры преры- Прер		управления USART	Флагзавершения	Флаг завершения	Регистр передатчика пист	Флагошибки калрирования	Флаг переполнения	Флан ошибки	Флагудвоения	Мультиплексорный обмен
UBRRL Регистр скорости пере- дачи данных USART Редоршение преры- вения по заверше- дачи данных USART Разрешение преры- вения по заверше- нии прияма Разрешение преры- нии преры- вения по заверше- нии прияма Разрешение преры- нии преры- вения по заверше- нии прерадания Разрешение преры- нии прерадания Распор- вения прияма Разрешение преры- нии преры- вения премора- вения премора- вения премора- вения премора- вения и премора- вения премора- вения премора- вения премора- вения и п	+	Рагисти В состояния и	DACIE	TYCIE	IIDDIE	DVEN	TVEN	IICC23	DVD9	TVP9
UBRRL Регистр скорости пере- дачи данных USART ACD ACBG ACO ACSR Регистр скорости пере- дачи данных USART ACD ACBG ACO ACSR Регистр скорости пере- дачи данных USART ACD ACB ACO ACSR Регистр состояния и гового компаратора Rownsparropa Rownsparropa ACD ACB ADMUX Регистр управления внало- имультиплексором AцП Bыключение REFS1 REFS0 ADCSRA Регистр управления и правления и правления и правления и правления АцП Выблючение работы баружения преобразования (1- темний, подключеный к АКС, 11- вну- треобразования (1- темний (1- темни	+	vensor of the ADT	Despelledite prepri	Despelledite prepri	Despelledite monti	Doopolito	Doopouldo	Montage noctings	NADO S Desired	- VDO
UBRRL Регистр скорости пере- дачи данных USART ACD ACBG ACO ADMUX Регистр состояния и гового компаратора Bыключение компаратора Подключение компаратора Выхлючение компаратора ADLAR ADMUX Регистр управления REFS1 REFS1 Bыхлочение компаратора ADLAR ADMUX Регистр управления REFS1 Bыхлоченный конденсатором ADLAR ADCSRA Регистр данных АЦП Тренний годключенный к АVCC, 11—в ну- трений годключен годключ		yupabilenna osani	газрошелие пререг вания по заверше- нию приема	газрошелие пререг вания по заверше- нию передачи	газрешелие пререг вания при очистке регистра данных	присма	передачи	Формат поселия. 0- 58 разрядов. 1- 9-разрядов	о-разряд принимаемьк данных	о-разряд передаваемък данньк
ACSR Регистр состояния инавидения инавидения выключение компаратора ACD ACBG ACO ADMUX Регистр управления анало-гового компаратора Компаратора компаратора Компаратора компаратора Компаратора компаратора Выключение компаратора	\vdash	Perистр скорости пере- дачи данных USART				Младший байт	й байт			
ADMUX Регистр управления анало- гового компаратора Выключение компаратора Подключение к компаратора Подключение к компаратора Выключение к компаратора Подключение к компаратора Выключение к компаратора Выкли компаратора Выкли компаратора<	H	Регистр состояния и	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0
ADMUX Регистр управления REFS1 REFS1 ADLAR ADMUX Регистр управления REFS1 ADLAR Mультиплексором АЦП Выбор источний подключенный к АКЕГ. 01 — результата внешний, подключенный к АКЕГ. 01 — результата внешний, подключенный к АКЕГ. 01 — результата внешний, подключенный к АКС, 11 — вну преобразования (1-тренчий 2,56В с внешним конденсатором левое) АВБИ		управления анапо-	Выключение	Подключение к	П	Флагпрерывания	Разрешение	Тодключение ком-	Условие возникновение прерывания от	ние прерывания от
ADMUX Perиcтр управления REFS1 ADLAR мультиплексором АЦП Выбор источний подключеный к АУСС, 11— внутьтата внешний, подключенный к АУСС, 11— внутьтата внешний к образования (1- втозе внешний в АВСК в зависимости от АВСК в АВСК		гового компаратора	компаратора	неинвертирующему входу внутр. ИОН		от компаратора	прерывания от компаратора	паратора к схеме захвата таймера T1	компаратсра: 00-любое изменение въхода, 10-изм. с 1 на 0, 11- изм. с	компаратсра: 00-любое изменение выхода, 10-изм. с 1 на 0, 11-изм. с 0 на 1
ADCSRA Регистр состояния и тумв Выбор источния и тумв ADS ADATE Выбор источния и тумв Выбор источния и тумв Выбор источния и тумв Выбор источния и тумв Выравнив на вына ADCSRA Регистр состояния и тумв ADEN ADSC ADATE ADATE ADCH Регистр данных АЦП Разрешение работы преобразования пуск в зависимости от дование, 1 - зависимости от дова		Регистр управления	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0
ADCSRA Регистр состояния и дении дост с въвшним конденсанором певое) Трении дост с въвшним конденсанором певое) ТП — 1 ADCH Регистр данных АЦП Разрешение работы Залуск вовение, 1 - автозапуск вовен		мультиплексором АЦП	Выбор источника опс 00- внешний, подклю внешний, подключен	рного напракения: ченный к AREF, 01— ный к AVCC, 11— вну-	Выравнивание результата преобразования (1-	. Ка́на́л AQЛ: 000000; 01011—(ADC1-ADC 10000 10111 - (AD	Катал АДП. 00000010111-каналы АБСО АБС7 5 К=f; 01001 1.(4БСП-АБСО) 10; 01011 — (ABC1-ABC0)*200, 01101 — (ABC3-ABC2)*10, 01111 — (ABC3-ABC2)*200; 1000010111 - (ABCn-ABC1); 1100011101 - (ABCn-ABC1); 11110 — внутвенний источник 1,22В;	0 ADC7 ē.K≐f; 0f0ť 3-ADC2)*10; 0f111 — 10f - (ADCn-ADC1); ′	31 = (ДБС1 -дБС0)*Л -(АБС3-АБС2)*200; 11110 — ВНУТРЕННИЙ	т. источник 1,22B;
ADCH Регистр данных АЦП Разрешение работы преобразования вобиночное преобразования вобиночное преобразования вобиночное преобразования вобиночное преобразования вобиночное преобразования проставания то в выполняютия проставания то в выполняютия проставания то в в в в в в в в в в в в в в в в в в	+	Doructo coctoquique	ADEN	иним конденсатором	ADATE	11111 - UB	ADIE	Anbes	Appe4	Anden
ADCH Perистр данных АЦП TWAR Perистр данных АЦП TWAS	+	venesperoling AIIC	лости Вазпешение пабиты	- 1	ложим паботы: П.	Musi unentilis suida	Daynellianida	ADE 32 ADE 31 ADE 31 ADE 30	TS DECEMBED TO THE TREE TREE TO THE TREE TO THE TREE TREE TO THE TREE TREE TREE TREE TREE TREE TREE	Meno 8117.
ADCH Perистр данных АЦП ADCL Perистр данных АЦП TWDR Perистр данных ТМI TWA6 TWA3 TWAR Perистр адреса ТWI TWA6 TWA5 TWA4 7-битый TWSR Perистр состояния TWI TWS7 TWS6 TWS5 TWS4		управления яці			одиночное преобра- зование, 1- автоза-	откомпаратора	прерывания от компаратора	000-2, 001-2, 010-4, 011-8, 100-16, 101-32, 110-64, 111-128	.4, 011-8, -64,111-128	
ADCH Регистр данных АЦП ADCL Регистр данных АЦП TWDR Регистр данных ТWI TWAR Регистр адреса ТWI TWA6 ТWA5 ТWA4 ТWA3 TWSR Pегистр состояния TWI TWS7 TWS6 TWS5 TWS4 TWS					ADTS20 (SFIOR)					
ADCL Регистр данных АЦП TWDR Регистр данных ТМI TWAR Регистр адреса ТМI TWA6 ТWA5 ТWA4 Т-Битый TWSR Регистр состояния ТМI TWS7 TWS6 TWS5 TWS4 TWS4		Регистр данных АЦП				Старший байт	і байт			
TWDR Perиcтр данных TWI TWA6 TWA5 TWA4 TWSR Perистр состояния TWI TWS7 TWS6 TWS5		Регистр данных АЦП				Младший байт	й байт			
TWAR Perистр адреса TWI TWA6 TWA5 TWA4 TWSR Perистр состояния TWI TWS7 TWS6 Cranyc DM		Регистр данных ТМІ								
TWSR Регистр состояния TWI TWS7 TWS6 TWS6 Craryc TWI		Регистр адреса ТWI	TWA6	TWA5	TWA4	П	TWA2	TWA1	TWA0	TWGCE
IWSK Perистр состояния IWI IWS/ IWS6 IWS5	\dashv					7-битный адрес				
		Регистр состояния ТМ	TWS7	TWS6	TWS5 - Trans TWF	TWS4	TWS3	ı	TWPS1 The Jae Interest TW	TWPS1 The agentiens TWI 00 - K=3 -01 K=3 -1
									10-K=16,11-K=64	34
Perincip ckopocin TWI TWBR7 TWBR6 TWBR5	0 (\$20) TWBR	Регистр скорости ТМІ	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0

ПРИЛОЖЕНИЕ 3. Таблица векторов прерываний микроконтроллера ATmega8535

№ вектора	Адрес	Источник	Примечание
прерываний	Адрес	ИСТОЧНИК	•
1	\$000	RESET	Сброс по выводу RESET и сторожевому таймеру (Hardware Pin, Power-On Reset and Watchdog Reset)
2	\$001	INTO	Запрос внешнего прерывания 0 (External Interrupt Reguest 0)
3	\$002	INT1	Запрос внешнего прерывания 1 (External Interrupt Reguest 1)
4	\$003	TIMER2 COMP	Совпадение при сравнении таймера/счетчика 2 (Timer/Conter2 Compare Match)
5	\$004	TIMER2 OVF	Переполнение таймера/счетчика2 (Timer/Conter2 Overflow)
6	\$005	TIMER1 CAPT	Захват таймера/счетчика1 (Timer/Conter1 Capture Event)
7	\$006	TIMER1 COMPA	Совпадение А при сравнении таймера/счетчика 1 (Timer/Conter1 Compare Match A)
8	\$007	TIMER1 COMPB	Совпадение В при сравнении таймера/счетчика 1 (Timer/Conter1 Compare Match B)
9	\$008	TIMER1 OVF	Переполнение таймера/счетчика1 (Timer/Conter1 Overflow)
10	\$009	TIMER0 OVF	Переполнение таймера/счетчика0 (Timer/Conter0 Overflow)
11	\$00A	SPI, STC	Завершение пересылки SPI (SPI Serial Transfer Complete)
12	\$00B	USART, RX	Завершение приема USART (UART, Rx Complete)
13	\$00C	USART, UDRE	Регистр данных USART пуст (UART Data Register Empty)
14	\$00D	USART, TX	Завершение передачи USART (USART, Tx Complete)
15	\$00E	ADC	Завершение ADC преобразования (ADC Conversion Complete)
16	\$00F	EE_RDY	Готовность EEPROM (EEPROM Ready)
17	\$010	ANA_COMP	Срабатывание аналогового компаратора (Analog Comparator)
18	\$011	TWI	Последовательный двухпроводной интерфейс Two-wire Serial Interface
19	\$012	INT2	Внешнее прерывание External Interrupt Request 2
20	\$013	TIMER0 COMP	Совпадение Р при сравнении таймера/счетчика Т0 Timer/Counter0 Compare Match
21	\$014	SPM_RDY	Готовность Store Program. Memory Ready

ПРИЛОЖЕНИЕ 4. Таблица векторов прерываний микроконтроллера ATmega32

№ вектора прерываний	Адрес	Источник	Примечание
1	\$000	RESET	Сброс по выводу RESET и сторожевому таймеру
2	\$002	INTO	Внешнее прерывание 0
3	\$003	INT1	Внешнее прерывание 1
4	\$006	INT2	Внешнее прерывание 2
5	\$008	TIMER2 COMP	Совпадение при сравнении таймера/счетчика T2
6	\$00A	TIMER2 OVF	Переполнение таймера/счетчика Т2
7	\$00C	TIMER1 CAPT	Захват таймера/счетчика Т1
8	\$00E	TIMER1 COMPA	Совпадение А при сравнении таймера/счетчика Т1
9	\$010	TIMER1 COMPB	Совпадение В при сравнении таймера/счетчика Т1
10	\$012	TIMER1 OVF	Переполнение таймера/счетчика T1
11	\$014	TIMER0 COMP	Совпадение при сравнении таймера/счетчика T0
12	\$016	TIMER0 OVF	Переполнение таймера/счетчика Т0
13	\$018	SPI, STC	Завершение пересылки SPI
14	\$01A	USART, RXC	Завершение приема USART
15	\$01C	USART, UDRE	Регистр данных USART пуст
16	\$01E	USART, TXC	Завершение передачи USART
17	\$020	ADC	Завершение ADC преобразования
18	\$022	EE_RDY	Готовность EEPROM
19	\$024	ANA_COMP	Срабатывание аналогового компаратора
20	\$026	TWI	Последовательный двухпроводной интерфейс
21	\$028	SPM_RDY	Готовность памяти программ

ПРИЛОЖЕНИЕ 5 Система команд микроконтроллеров AVR

Арифметические и логические команды

Мнемокод	Операнды	Описание	Операция	Флаги	Кол-во циклов
ADD	Rd, Rr 0≤d≤31 0≤r≤31	Сложить без переноса	Rd ←Rd + Rr	Z, C, N, V, H	1
ADC	Rd, Rr 0≤d≤31 0≤r≤31	Сложить с переносом	$Rd \leftarrow Rd + Rr + C$	Z, C, N, V, H	1
ADIW	Rd,K dE{24,26,28, 30}, 0≤K≤63	Сложить константу со словом	Rdh:Rdl← Rdh:Rdl+ K	Z, C, N, V	2
SUB	Rd,Rr 0≤d≤31 0≤r≤31	Вычесть без заема	Rd ← Rd – Rr	Z, C, N, V, H	1
SUBI	Rd, K 16≤d≤31 0≤K≤255	Вычесть константу	$Rd \leftarrow Rd - K$	Z, C, N, V, H	1
SBC	Rd, Rr 0≤d≤31 0≤r≤31	Вычесть с заемом	Rd ← Rd-Rr-C	Z, C, N, V, H	1
SBCI	Rd, K 16≤d≤32 0≤K≤255	Вычесть константу с заемом	Rd ← Rd-K-C	Z, C, N, V, H	1
SBIW	Rd, K dE{24,26,28, 30}, 0≤K≤63	Вычесть константу из слова	Rdh:Rdl← Rdh:Rdl-K	Z, C, N, V	2
AND	Rd, Rr 0≤d≤31 0≤r≤31	Выполнить логическое умножение	Rd ← Rd • Rr	Z, N, V	1
ANDI	Rd, K 16 <d<31 0<k≤255< td=""><td>Выполнить логическое умножение с констатой</td><td>Rd ← Rd • K</td><td>Z, N, V</td><td>1</td></k≤255<></d<31 	Выполнить логическое умножение с констатой	Rd ← Rd • K	Z, N, V	1
OR	Rd, Rr 0≤d≥31 0≤r≤31	Выполнить логическое сложение	Rd ←Rd v Rr	Z, N, V	1
ORI	Rd, K 16≤d≤31 0≤K≤255	Выполнить логическое сложение с константой	Rd ←Rd v K	Z, N, V	1
EOR	Rd, Rr 0≤d≤31 0≤r≤31	Выполнить исключающее ИЛИ	Rd ←Rd ⊕ Rr	Z, N, V	1
COM	Rd 0≤d≤31	Выполнить дополнение до единицы	Rd←SFF - Rd	Z, C, N, V	1

Мнемокод	Операнды	Описание	Операция	Флаги	Кол-во циклов
NEG	Rd 0≤d≤31	Выполнить дополнение до двух	Rd ← S00 - Rd	Z, C, N, V, H	1
SBR	Rd, K 16≤d≤31 0≤K≤255	Установить биты в регистре	Rd ← Rd v K	Z, N,V	1
CBR	Rd, K 16≤d≤31 0≤K≤255	Очистить биты в регистре	Rd ←Rd • (SFF-K)	Z, N, V	1
INC	Rd 0≤d≤31	Инкрементировать	Rd ← Rd + 1	Z, N,V	1
DEC	Rd 0≤d≤31	Декрементировать	Rd ← Rd - 1	Z, N,V	1
TST	Rd 0≤r≤31	Проверить на ноль или минус	Rd←Rd • Rd	Z, N, V	1
CLR	Rd 0≤d≤31	Очистить регистр	Rd ← Rd ⊕ Rd	Z, N, V	1
SER	Rd 16≤d≤31	Установить все биты регистра	Rd ←SFF	нет	1
MUL	Rd, Rr 0≤d≤31 0≤r≤31	Умножение без знака	R1:R0←Rd x Rr	Z, C	2
MULS	Rd, Rr 0≤d≤31 0≤r≤31	Умножение со знаком	R1:R0←Rd x Rr	Z, C	2
MULSU	Rd, Rr 0≤d≤31 0≤r≤31	Умножение знакового на беззнаковое	R1:R0←Rd x Rr	Z, C	2
FMUL	Rd, Rr 0≤d≤31 0≤r≤31	Умножение дробных чисел без знака	R1:R0 ← (Rd x Rr)<<1	Z, C	2
FMULS	Rd, Rr 0≤d,r≤31	Умножение дробных чисел со знаком	R1:R0← (Rd x Rr)<<1	Z, C	2
FMULSU	Rd, Rr 0≤d,Γ≤31	Умножение дробных чисел знакового на беззнаковое	R1:R0 ← (Rd x Rr)<<1	Z, C	2

Команды сдвигов и операций с битами

Мнем оника	Операнды	Описание	Операция	Флаги	Кол-во циклов
SBI	P,b O≤P≤31 0≤b≤7	Установить бит в регистр I/O	1/0(P,b) ← 1	Нет	2
СВІ	P,b 0≤P≤31 0≤b≤7	Очистить бит в регистре I/O	1/0(P,b) ← 0	Нет	2

Мнем оника	Операнды	Описание	Операция	Флаги	Кол-во циклов
LSL	Rd 0≤d≤31	Логический сдвиг влево	$Rd(n+1) \leftarrow Rd(n),$ $Rd(0) \leftarrow 0$	Z,C,N, V,S,H	1
LSR	Rd 0≤d≤31	Логический сдвиг вправо	$Rd(n) \leftarrow Rd(n+1),$ $Rd(7) \leftarrow 0$	Z,C,N, V,S,H	1
ROL	Rd 0≤d≤31	Циклический сдвиг влево	$Rd(0) \leftarrow C$, $Rd(n+1) \leftarrow Rd(n)$, $C \leftarrow Rd(7)$	Z,C,N, V,S,H	1
ROR	Rd 0≤d≤31	Циклический сдвиг вправо	$Rd(7) \leftarrow C$, $Rd(n) \leftarrow Rd(n+1)$, $C \leftarrow Rd(0)$	Z,C,N, V,S,H	1
ASR	Rd 0≤d≤31	Арифметический сдвиг вправо	$Rd(n) \leftarrow Rd(n+1),$ n=06	Z,C,N, V,S	1
SWAP	Rd 0≤d≤31	Поменять нибблы местами	Rd(30) <-> Rd(74)	Нет	1
BSET	s, 0≤s≤7	Установить флаг	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s 0≤s≤7	Очистить флаг	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rd,b 0≤d≤31 0≤b≤7	Переписать бит из регистра во флаг Т	$T \leftarrow Rd(b)$	Т	1
BLD	Rd,b 0≤d≤31 0≤b≤7	Загрузить Т флаг в бит регистра	$Rd(b) \leftarrow T$	Нет	1
SEC		Установить флаг переноса	C ← 1	С	1
CLC		Очистить флаг переноса	C ← 0	С	1
SEN		Установить флаг отрицательного значения	M ← 1	N	1
CLN		Очистить флаг отрицательного значения	N ← 0	N	1
SEZ		Установить флаг нулевого значения	Z ← 1	Z	1
CLZ		Очистить флаг нулевого значения	Z ← 0	Z	1
SEI		Установить флаг глобального прерывания	I ← 1	I	1
CLI		Очистить флаг гло- бального прерывания	I ← 0	I	1
SES		Установить флаг знака	S ← 1	S	1

Мнем оника	Операнды	Описание	Операция	Флаги	Кол-во циклов
CLS		Очистить флаг знака	S ← 0	S	1
SEV		Установить флаг переполнения	V ← 1	V	1
CLV		Очистить флаг переполнения	V ← 0	V	1
SET		Установить флаг Т	T ← 1	Т	1
CLT		Очистить флаг Т	T ← 0	Т	1
SEH		Установить флаг полупереноса	H ← 1	Н	1
CLH		Очистить флаг полупереноса	H ← 0	Н	1
NOP		Выполнить холостую команду		Нет	1
SLEEP		Установить режим SLEEP		Нет	1
WDR		Сбросить сторожевой таймер		Нет	1

Команды пересылки данных

Мнемо ника	Операнды	Описание	Операция	Флаги	Кол-во циклов
MOV	Rd,Rr 0≤d≤31 0≤r≤31	Копировать регистр	Rd←Rr	Нет	1
MOVW	Rd,Rr 0≤d≤31 0≤r≤31	Копировать слово	Rd←Rr Rd+1←Rr+1	Нет	1
LDI	Rd,k 16≤d≤31 0≤k≤255	Загрузить константу	Rd←K	Нет	1
LD	Rd, X 0≤d≤31	Загрузить косвенно	$Rd \leftarrow (X)$	Нет	2
LD	Rd, X+ 0≤d≤31	Загрузить косвенно с постинкрементом	$Rd \leftarrow (X), \\ X \leftarrow X+1$	Нет	2
LD	Rd, –X 0≤d≤31	Загрузить косвенно с преддекрементом	$X \leftarrow X-1$, $Rd \leftarrow (X)$	Нет	2
LD	Rd, Y 0≤d≤31	Загрузить косвенно	Rd ← (Y),	Нет	2

Мнемо ника	Операнды	Описание	Операция	Флаги	Кол-во циклов
LD	Rd, Y+ 0≤d≤31	Загрузить косвенно с постинкрементом	Rd ← (Y), Y ← Y+1	Нет	2
LD	Rd, −Y 0≤d≤31	Загрузить косвенно с преддекрементом	$Y \leftarrow Y-1,$ $Rd \leftarrow (Y)$	Нет	2
LDD	Rd, Y+q 0≤d≤31 0≤q≤63	Загрузить косвенно со смещением	Rd ← (Y+q)	Нет	2
LD	Rd, Z 0≤d≤31	Загрузить косвенно	$Rd \leftarrow (Z)$	Нет	2
LD	Rd, Z+ 0≤d≤31	Загрузить косвенно с постинкрементом	$Rd \leftarrow (Z),$ $Z \leftarrow Z+1$	Нет	2
LD	Rd, –Z 0≤d≤31	Загрузить косвенно с преддекрементом	Z ← Z-1, Rd ← (Z)	Нет	2
LDD	Rd, Z+q 0≤d≤31 0≤q≤31	Загрузить косвенно со смещением	Rd ← (Z+q)	Нет	2
LDS	Rd,k 0≤d≤31 0≤k≤65535	Загрузить непосредственно из ОЗУ	Rd←(k)	Нет	2
ST	X, Rr 0≤r≤31	Записать косвенно	(X) ← Rr	Нет	2
ST	X+, Rr 0≤r≤31	Записать косвенно с постинкрементом	(X) ← Rr, X ← X+1	Нет	2
ST	–X, Rr 0≤r≤31	Записать косвенно с преддекрементом	X ← X-1, (X) ← Rr	Нет	2
ST	Y, Rr 0≤r≤31	Записать косвенно	(Y) ←Rr	Нет	2
ST	Y+, Rr 0≤r≤31	Записать косвенно с постинкрементом	$(Y) \leftarrow Rr, \\ Y \leftarrow Y + 1$	Нет	2
ST	–Y, Rr 0≤r≤31	Записать косвенно с преддекрементом	$Y \leftarrow Y-1,$ $(Y) \leftarrow Rr$	Нет	2
STD	Y+q, Rr 0≤r≤31 0≤q≤63	Записать косвенно со смещением	(Y+q)←Rr	Нет	2
ST	Z, Rr 0≤r≤31	Записать косвенно	(Z) ←Rr	Нет	2
ST	Z+, Rr 0≤r≤31	Записать косвенно с постинкрементом	$(Z) \leftarrow Rr, \\ Z \leftarrow Z + 1$	Нет	2
ST	–Z, Rr 0≤r≤31	Записать косвенно с преддекрементом	$Z \leftarrow Z-1,$ $(Z) \leftarrow Rr$	Нет	2

Мнемо ника	Операнды	Описание	Операция	Флаги	Кол-во циклов
STD	Z+q, Rr 0≤r≤31 0≤q≤63	Записать косвенно со смещением	(Z+q)←Rr	Нет	2
STS	k, Rr 0≤d≤31 0≤k≤65535	Загрузить непосредственно в ОЗУ	(k) ← Rr	Нет	2
LPM		Загрузить из памяти программ	R0 ← (Z)	Нет	3
LPM	Rd, Z	Загрузить из памяти программ	$Rd \leftarrow (Z)$	Нет	3
LPM	Rd, Z+	Загрузить из памяти программ с послеинкрементом	$Rd \leftarrow (Z),$ $Z \leftarrow Z+1$	Нет	3
SPM		Записать в память программ	(Z) ← R1:R0	Нет	_
IN	Rd, P 0≤d≤31 0≤P≤63	Загрузить данные из порта I/O в регистр	Rd←P	Нет	1
OUT	P, Rr 0≤r≤31 0≤P≤63	Записать данные из регистра в порт I/O	P←Rr	Нет	1
PUSH	Rr 0≤r≤31	Сохранить регистр в стеке	STACK ←Rr	Нет	2
POP	Rd 0≤r≤31	Загрузить в регистр из стека	Rd ← STACK	Нет	2

Команды переходов

Мнем оника	Операнды	Описание	Операция	Флаги	Кол-во циклов
RJMP	k -2K <k<2k< td=""><td>Перейти относительно</td><td>PC ←PC + k + 1</td><td>Нет</td><td>2</td></k<2k<>	Перейти относительно	PC ← PC + k + 1	Нет	2
LJMP		Перейти косвенно	PC←Z	Нет	2
JMP	k 0 <k<4m< td=""><td>Прямой переход</td><td>PC←k</td><td>Нет</td><td>3</td></k<4m<>	Прямой переход	PC←k	Нет	3
RCALL	k -2K≤k≤2K	Вызвать подпрограмму относительно	PC ← PC + k + 1	Нет	3
ICALL		Вызвать подпрограмму косвенно	PC←Z	Нет	3
CALL	k 0≤k≤64K	Прямой вызов подпрограммы	PC←k	Нет	4
RET		Вернуться из подпрограммы	PC ← STACK	Нет	4

Мнем оника	Операнды	Описание	Операция	Флаги	Кол-во циклов
RETI		Вернуться из прерывания	PC ← STACK	I	4
CPSE	Rd, Rr 0≤d≤31, 0≤r≤31	Сравнить и пропустить, если равно	If Rd=Rr then PC ← PC + 2 (or 3)	Нет	1/2/3
СР	Rd, Rr 0≤d≤31 0≤r≤31	Сравнить регистры	Rd-Rr	Z, C, N, V, H	1
СРС	Rd, Rr 0≤d≤31 0≤r≤31	Сравнить регистры с учетом переноса	Rd-Rr-C	Z, C, N, V, H	1
CPI	Rd, K 16≤d≤31 0≤K≤255	Сравнить с константой	Rd-K	Z, C, N, V, H	1
SBRC	Rr, b 0≤r≤31 0≤b≤7	Пропустить, если бит в регистре очищен	if $Rr(b)=0$ then $PC \leftarrow PC + 2$ (or 3)	Нет	1/2/3
SBRS	Rr, b 0≤r≤31 0≤b≤7	Пропустить, если бит в регистре установлен	If $Rr(b)=1$ then $PC \leftarrow PC + 2$ (or 3)	Нет	1/2/3
SBIC	P, b 0≤P≤31 0≤b≤7	Пропустить, если бит в регистре I/O очищен	if $P(b)=0$ then $PC \leftarrow PC + 2$ (or 3)	Нет	1/2/3
SBIS	P, b 0≤r≤31 0≤b≤7	Пропустить, если бит в регистре I/O установлен	If $P(b)=1$ then $PC \leftarrow PC + 2$ (or 3)	Нет	1/2/3
BRBS	s, k 0≤s≤7 -64≤k≤+63	Перейти, если бит в регистре статуса установлен	if SREG(s)=1 then PC \leftarrow PC + k + 1	Нет	1/2
BRBC	s, k 0≤s≤7 -64≤k≤+63	Перейти, если бит в регистре статуса очищен	if SREG(s)=0 then PC \leftarrow PC + k + 1	Нет	1/2
BREQ	k -64≤k≤+63	Перейти, если равно	if Rd=Rr (Z=1) then $PC \leftarrow PC + k + 1$	Нет	1/2
BRNE	k -64≤k≤+63	Перейти, если не равно	if $Rd \neq Rr(Z=0)$ then $PC < \leftarrow PC + k + 1$	Нет	1/2
BRCS	k -64≤k≤+63	Перейти, если флаг переноса установлен	if C=1 then PC \leftarrow PC + k + 1	Нет	1/2
BRCC	k -64≤k≤+63	Перейти, если флаг переноса очищен	if C=0 then PC \leftarrow PC + k + 1	Нет	1/2
BRSH	k -64≤k≤+63	Перейти, если равно или больше (без знака)	if Rd <rr(c=0) then<br="">PC←PC+ k+ 1</rr(c=0)>	Нет	1/2
BRLO	k -64≤k≤+63	Перейти, если меньше (без знака)	if Rd <rr (c="1)" then<br="">PC ←PC + k + 1</rr>	Нет	1/2

Мнем оника	Операнды	Описание	Операция	Флаги	Кол-во циклов
BRMI	k -64≤k≤+63	Перейти, если минус	if N=1 then PC \leftarrow PC + k + 1	Нет	1/2
BRPL	k -64≤k≤+63	Перейти, если плюс	if N=0 then PC \leftarrow PC + k + 1	Нет	1/2
BRGE	k -64≤k≤+63	Перейти, если больше или равно (со знаком)	if Rd>Rr (N \oplus V=0) then PC \leftarrow PC+k+1	Нет	1/2
BRLT	k -64≤k≤+63	Перейти, если меньше чем (со знаком)	if Rd <rr (n<math="">\oplusV=1) then PC\leftarrowPC+k+1</rr>	Нет	1/2
BRHS	k -64≤k≤+63	Перейти, если флаг полупереноса установлен	if H=1 then PC \leftarrow PC + k + 1	Нет	1/2
BRHC	k -64≤k≤+63	Перейти, если флаг полупереноса очищен	if H=0 then PC \leftarrow PC + k + 1	Нет	1/2
BRTS	k -64≤k≤+63	Перейти, если флаг Т установлен	if T=1 then $PC \leftarrow PC + k + 1$	Нет	1/2
BRTC	k -64≤k≤+63	Перейти, если флаг Т очищен	if T=0 then PC \leftarrow PC + k + 1	Нет	1/2
BRVS	k -64≤k≤+63	Перейти, если флаг переполнения установлен	if V=1 then $PC \leftarrow PC + k + 1$	Нет	1/2
BRVC	k -64≤k≤+63	Перейти, если флаг переполнения очищен	if V=0 then $PC \leftarrow PC + k + 1$	Нет	1/2
BRIE	k -64≤k≤+63	Перейти, если глобальное прерывание разрешено	if $I=1$ then $PC \leftarrow PC + k + 1$	Нет	1/2
BRID	k -64k≤k≤+63	Перейти, если глобальное прерывание запрещено	if $I=0$ then $PC \leftarrow PC + k + 1$	Нет	1/2